1 / 25

Trust Modeling ( Introduction)

Ing. Arnoštka Netrvalová. Trust Modeling ( Introduction). September 2008. Trust modeling. Fide, sed qui fidas , vide. It is an equal failing to trust everybody, and to trust nobody. Why ? W here? What? Behaviour and t rust Trust representation Trust visualization Trust forming

gyda
Download Presentation

Trust Modeling ( Introduction)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Ing. Arnoštka Netrvalová Trust Modeling(Introduction) September 2008

  2. Trust modeling Fide, sed qui fidas, vide. It is an equal failing to trusteverybody, and to trust nobody. • Why? Where?What? • Behaviour and trust • Trust representation • Trust visualization • Trust forming • Trust, agents and MAS • Cooperation • Results • Can it be trusted? [ChangingMinds.org] / 25

  3. Trust modeling WHY? WHERE? • Phenomenon of everyday life • Internet • e-banking – credibility • e-commerce – trustworthiness of partners • e-service – quality, promptness • PC and computing /25

  4. Trust modeling WHERE? WHAT? Computing and trust • P2P systems – security (working together of nodes) • GRID computing – security (reliability of sources, users) • AD HOC networks – message integrity (node =server, router, client, malicious nodes, special protocols, cryptographic codes) • MAS – security dependability(malicious agent detection, migrating, selection of „the best“ agent, system’s optimization) • Semantic web – credibility of sources (machine information collection) /25

  5. Trust modeling Trust definition Gambetta's definition was derived as a summary of the contributions to the symposium on trust in Cambridge,England, 1988. Trust (or symmetrically, distrust) is a particular level of the subjective probability with which an agent will perform a particular action, both before we can monitor such an action (or independently of our capacity of ever to be able to monitor it) and in a context in which it affects our own action. /25

  6. Trust modeling Behaviour and trust “I trust him.” “How much do I trust him?” “How much I think, he trusts me?” • What does it mean? • Can trust be measured? • What is visual representation of trust? /25

  7. Trust modeling  Blind trust    Ignorance    Absolute distrust   Basic trust levels /25

  8. Trust modeling 1 0 0.95 0.7 0.5  0.025 0.3 0.05 Absolute distrust High trust High distrust Blind trust Low trust Low distrust Ignorance Representation of trust value /25

  9. Trust modeling Hysteretic trust loop Trust value Absolute distrust Interval Blind trust /25

  10. Trust modeling trust (1, 0) (1, 1) Subject A (0.5, 0.5) (0, 1) distrust (0, 0) distrust trust Subject B Trust visualization „Trust square“: two relationfor coupleandonevalueper relationship /25

  11. Trust modeling 1 2 3 4 5 6 7 8 9 Trust visualization BASIC: 1 coupleof reciprocal distrust 3 couple - one entity trusts the other one and the other entity distrusts completely the first one 5 couple - one entity trusts and the other one is indifferent 7 couple - one entity is indifferent and the other distrusts the first one 9 -both entities are indifferent to each other or no relationship between them Example: Trust in community /25

  12. Trust modeling A 0.9 0.8 0.6 B C 0.5 Trust types • personal – trust between entity -unilateral -reciprocal • phenomenal – trust to phenomenon (product) Example: Representation of personal trust in group /25

  13. Trust modeling Personal trust forming -personal trust i-th entity to j-th entity - personal trust j-th entity to i-th entity - number of reciprocal contacts i-th and j-th entities - number of recommendations of j-th entity to i-th from others - knowledge (learning, testing set) - reputation of j-th entity at i-th entity - randomness, where 0<<1 - trust difference (trust acquisition,trust loss) /25

  14. Trust modeling Phenomenal trust forming -trust i-th entity in k-th product -number of recommendationof k-th product toi-thentity - reputation of k-th product at i-th entity -randomness, where 0<<1 - trust difference (trust acquisition,trust loss) /25

  15. Application support World    Consumers     Producers      Dominator Trust modeling Trust model concept Basic idea - interventiontrust model  ---- control ….. data  communication /25

  16. Trust modeling Context Agents Agent Trust Knowledge base Evaluation Communication Environment Reputations Recommendations Agent Learning Perception Representation Knowledge base Decision making Planning Action Trust,agents and MAS /25

  17. Trust modeling Software for agent modeling and simulation • RETSINA (Reusable Environment for Task-Structured Intelligent Networked Agents ) - Carnegie Mellon University • Swarm (Swarm Intelligence) - Santa FE Research Institute • JADE (Java Agent DEvelopment Framework) JADE - developmentof MAS(FIPAstandards), middleware • Runtime environment • Librariesfordevelopment of agent • Graphical tool package for administration and monitoring of agents /25

  18. Trust modeling Cooperation – selection of partners Application • Graph theory • Game theory • Risk -“caution index” • Reciprocal trust Trust matrix /25

  19. Trust modeling Cooperation – caution index Payoff matrixr = (y -z)x =  g=(x -y) w =(1-) t = (w -x)z = (1-) y = (1-) (1-) Caution matrix Caution index /25

  20. Trust modeling Cooperation - criteria of couple selection Reduced caution matrix (pre-selected pairs) Criteria of couple selection Minimum: 1. meansboth ofcaution index 2. maximumofcaution index of evaluatedcouples

  21. Results – personal trust (Trustor) Trust modeling /25

  22. Trust modeling t BA 1 0,78; 0,94 0,9 0,96; 0,82 0,83; 0,81 0,8 0,72; 0,79 0,71; 0,74 0,79; 0,72 0,88; 0,72 0,7 0,7 0,8 0,9 1 t AB Results - cooperation Example (n=15, =10°, tij - random): [0;6] c[0.45;0.15] t[0.96;0.82] [4;9] c[0.52;0.35] t[0.79;0.72] [4;13] c[0.19;0.51] t[0.78;0.94] [5;9] c[0.40;0.49] t[0.71;0.74] [5;10] c[0.36;0.50] t[0.72;0,79] [9;12] c[0.56;0.24] t[0.88;0.72] [12;14] c[0.40;0.36] t[0.83;0.81] /25

  23. Trust modeling Can it be trusted? Trust in Math The classic proof that 2 = 1 runs thus. • First, let x = y = 1.  Then: x  =  y • x2  =  xy • x2 - y2  =  xy - y2 • (x + y)(x - y)  =  y(x - y) • x + y = y • 2 = 1 Now, you could look at that, and shrug, and say … /25

  24. Trust modeling Důvěra, práce a výsledky „Malá důvěra je příčinou třenic a sporů, často vyvolaných neetickým či neprofesionálním jednáním. Jejím projevem jsou skryté agendy a politikaření skupin. Bývá zdrojem nezdravé rivality, vede k uvažování „výhra-prohra“ a ústí do defenzivní komunikace. Důsledkem je snížení rychlosti a zvýšení námahy při řešení úkolů.“ … … „Tím nejdůležitějším faktorem ovlivňujícím důvěru jsou výsledky. Avšak být důvěryhodným, neznamená jen mít výsledky, ale také docílit, aby o nich věděli i ostatní.“ Stephen M. R. Covey: Důvěra: jediná věc, která dokáže změnit vše, Management Press, 2008 [Stephen M. R. Covey: The Speed of Trust, Free Press,New York, 2006] /25

  25. Thank you for your attention.

More Related