190 likes | 545 Views
Chapter 19 Principles of Reactivity: Entropy & Free Energy. Spontaneity Spontaneous processes Factors affecting spontaneity Entropy Entropy changes The third law of thermodynamics Calculating entropy changes in chemical reactions The second law of thermodynamics Gibbs Free Energy
E N D
Spontaneity • Spontaneous processes • Factors affecting spontaneity • Entropy • Entropy changes • The third law of thermodynamics • Calculating entropy changes in chemical reactions • The second law of thermodynamics • Gibbs Free Energy • Definition • Calculating free energy changes in chemical reactions • Standard free energy of formation • Free energy and temperature • Free energy and equilibrium
I. Spontaneity • A. Spontaneous process • = one that, once started, continues on its own without input of energy • nonspontaneous = needs continual input of energy • Chemical Thermodynamics • Chapter 6: Thermochemistry • heat of reaction, DH • first law: conservation of energy • Thermodynamics: energy changes • entropy (DS), free energy (DG) • second and third laws • spontaneity of reaction, position of equilibirum
I. Spontaneity B. Factors affecting spontaneity • 1. decrease in potential energy (DH < 0) • apple falling • water flowing downhill • 2H2 + O2 2H2O • HCl + NaOH NaCl + H2O • thermite • 2. increase in disorder (tendency toward higher probability) • deck of cards (6 x 109 combinations) • gas molecules in a container • salt dissolving in water • ice melting, water evaporating
A. Entropy changes Entropy change, DS = Sf - Si • 1. examples • expansion of a gas DS • dissolution of a solid DS • H2O(s) H2O(l) H2O(g) DS • H2O(g) H2O(l) H2O(s) DS • H2CO3 CO2+ H2O DS • 2H2 + O2 2H2O DS • CaO + SO2 CaSO3DS remove partition H2O NaCl(s) NaCl(aq) II. Entropy, S = degree of disorder (probability)
q DS DS= 1 T q T 10 K 20 K DS1 DS1 > DS2 q 300 K 310 K DS2 II. Entropy A. Entropy changes 2. calculating DS for fusion and vaporization DS q increase KE increase in disorder e.g., For H2O(s) H2O(l), DHfus = +6.02 kJ/mol at 0ºC and for H2O(l) H2O(g), DHvap = +40.7 kJ/mol at 100ºC. What are DSfus and DSvap?
increase in S II. Entropy B. The third law of thermodynamics • “For a pure, crystalline substance at 0 K, S = 0” • Increase T increase in: translational motion • vibrational motion • rotational motion • Standard state entropy, Sº • = entropy of a substance at 25ºC, 1 atm (Table 19.1, Appendix L) (Sº 0 for elements!)
(note units) II. Entropy C. Calculating entropy changes in chemical reactions • Standard entropy change, DSº • DSºrxn = Sºproducts - Sºreactants • e.g., 2H2 + O2 2H2O • DSºrxn = [2Sº(H2O)] - [2Sº(H2) + Sº(O2)] • = [2(188.8)] - [2(130.6) + (205.0)] • = -88.6 J/K
II. Entropy C. Calculating entropy changes in chemical reactions • e.g., Calculate the standard entropy change for the reaction, • 2Al(s) + 3Cl2(g) 2AlCl3(s) Sº(Al) = 28.3 J/mol·K • Sº(Cl2) = 223.1 J/mol·K • Sº(AlCl3) = 110.7 J/mol·K
universe system surroundings II. Entropy D. The second law of thermodynamics “In any spontaneous process, the entropy of the universe must increase (DSuniverse > 0). DSuniverse = (DSsystem + DSsurroundings) > 0 e.g., erecting a building 6CO2 + 6H2O C6H12O6 + 6O2 CFCs
DHsystem T DHsystem T qsystem T DSsurroundings = – = – DSuniverse = DSsystem – DGsystem = DHsystem – TDSsystem • Gibbs free energy • state function • relates spontaneity to heat of reaction (DH) and entropy (DS) • for a process to be spontaneous, DSuniverse > 0 or DGsystem < 0 III. Gibbs Free Energy A. Definition DSuniverse = DSsystem + DSsurroundings TDSuniverse = DHsystem – TDSsystem
Reactants Products G Equilibrium III. Gibbs Free Energy A. Definition DG < 0: exergonic, spontaneous DG > 0: endergonic, nonspontaneous DG = 0: system is at equilibrium (no free energy remains) DGrxn < 0 “spontaneous” R E DG < 0 spontaneous P E DG < 0 spontaneous E R DG > 0 nonspontaneous E P DG > 0 nonspontaneous
III. Gibbs Free Energy B. Calculating free energy changes in chemical reactions e.g., C(s) + ½O2(g) + 2H2(g) CH3OH(l) at 25º DHºrxn = DHfº(products) – DHfº(reactants) = –238.7 kJ/mol DSºrxn = Sºproducts – Sºreactants = [Sº(CH3OH)] – [Sº(C) + ½Sº(O2) + 2Sº(H2)] = [126.8] – [(5.7) + ½(205.1) + 2(130.7)] = –242.9 J/mol·K DGºrxn = DHºrxn – TDSºrxn = (–238.7 kJ/mol) – (298 K)(–242.9 J/mol·K) = –166.3 kJ/mol = DGfº(CH3OH)
standard free energies of formation • (Table 19.3, Appendix L; note: DGfº(element) = 0) III. Gibbs Free Energy C. Using standard free energies of formation DGºrxn = DGfº(products) - DGfº(reactants) e.g., CH4(g) + 2O2(g) CO2(g) + 2H2O(l) DGºrxn = [DGfº(CO2) + 2DGfº(H2O)] - [DGfº(CH4)] = [(-394.4) + 2(-237.1)] - [(-50.7)] = -817.9 kJ
III. Gibbs Free Energy C. Using standard free energies of formation • e.g., If DGºrxn for the following reaction is -272.8 kJ, what is DGºf for TiCl2? • TiCl2(s) + Cl2(g) TiCl4(s) (DGºf(TiCl4) = -737.2 kJ/mol)
H2O • NH4NO3(s) NH4+(aq) + NO3–(aq) (gets cold) • DH > 0, DS > 0 DG < 0 at higher temperatures III. Gibbs Free Energy D. Free energy and temperature DG = DH – TDS DH DS DG – + – at all temperatures + – + at all temperatures + + – at higher temperatures, + at lower temperatures – – – at lower temperatures, + at higher temperatures • e.g., C12H22O11 + 12O2 12CO2 + 11H2O (produces heat) • DH < 0, DS > 0 DG < 0 at any temperature • (for reverse reaction, DG > 0 at any temperature; requires input of energy)
III. Gibbs Free Energy D. Free energy and temperature • e.g., CH3–CH3 CH2=CH2 + H2DHº = +137 kJ • DSº = + 128 J/mol·K • at 25ºC, DGº = +98.9 kJ nonspontaneous • Above what temperature does the reaction become spontaneous?
DGº = –RTlnK G R P R P R P DGº > 0 DGº < 0 DGº = 0 III. Gibbs Free Energy E. Free energy and equilibrium DG = DGº + RTlnQ At equilibrium, DG = 0, Q = K 0 = DGº + RTlnK DGº < 0 K > 1 equilibrium lies to the right DGº > 0 K < 1 equilibrium lies to the left DGº = 0 K = 1 equilibrium lies in the middle
e.g., 2SO2+ O2 2SO3 What is K at 25ºC? DGºf(SO2) = -300.2 kJ/mol DGºf(SO3) = -371.1 kJ/mol III. Gibbs Free Energy E. Free energy and equilibrium DGº = –RTlnK or K = e–Gº/RT