110 likes | 213 Views
Main A, No B, No AxB. B 1. B 2. 10. 2. 2. 2. A 1. 5. B 2. A 2. 4. 4. 4. B 1. 3. 3. A 1. A 2. Main A, Main B, No AxB. B 1. B 2. 10. 3. 2. 4. A 1. B 2. 5. B 1. A 2. 4. 6. 5. 3. 5. A 1. A 2. No Main A, Main B, No AxB. B 1. B 2. 10. 3. 2. 4. A 1. B 2. 5.
E N D
Main A, No B, No AxB B1 B2 10 2 2 2 A1 5 B2 A2 4 4 4 B1 3 3 A1 A2
Main A, Main B, No AxB B1 B2 10 3 2 4 A1 B2 5 B1 A2 4 6 5 3 5 A1 A2
No Main A, Main B, No AxB B1 B2 10 3 2 4 A1 B2 5 A2 2 4 3 B1 2 4 A1 A2
No Main A, No Main B, No AxB B1 B2 10 4.1 4 4.2 A1 B2 5 B1 A2 4 4.2 4.1 4 4.2 A1 A2
Main A, No Main B, AxB B1 B2 10 2 3 1 A1 B2 5 B1 A2 5 7 6 4 4 A1 A2
Main A, Main B, AxB B1 B2 B2 10 3 2 4 A1 5 B1 A2 4 10 7 3 7 A1 A2
Main A, Main B, AxB B1 B2 10 B2 5 4 6 A1 5 A2 2 8 5 B1 3 7 A1 A2
No Main A, No Main B, AxB B1 B2 10 B1 6 4 8 A1 5 B2 A2 8 4 6 6 6 A1 A2
Checking for an Interaction • Using the line graph • Non parallel lines --> Possible Interaction • Crossover lines --> Definite Interaction • Matrix Table • If the difference between A1/A2 is different for each level of B, there is an interaction • If the difference between B1/B2 is different for each level of A, there is an interaction
Checking for a Main Effect of A • Using the line graph • Both lines slope upward or both lines slope downward you have a Main Effect of A • To use the Matrix • Check the marginal means for A (here the row means)
Checking for a Main Effect of B • Using the line graph • If line B1 is above line B2 or line B2 is above B1 you have a possible main effect of B • To use the Matrix • Compare the marginal means for B (here the column means)