1 / 40

Phenomenological Description of the Quark-Gluon-Plasma

Phenomenological Description of the Quark-Gluon-Plasma. B. Kämpfer. Helmholtz-Zentrum Dresden-Rossendorf Technische Universität Dresden. M. Bluhm, R. Schulze, R. Yaresko, F. Wunderlich, M. Viebach. K. Rajagopal, T. Schafer, U. Wiedemann ...: sQGP has no quasi-particle description.

haines
Download Presentation

Phenomenological Description of the Quark-Gluon-Plasma

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Phenomenological Description of the Quark-Gluon-Plasma B. Kämpfer Helmholtz-Zentrum Dresden-Rossendorf Technische Universität Dresden M. Bluhm, R. Schulze, R. Yaresko, F. Wunderlich, M. Viebach K. Rajagopal, T. Schafer, U. Wiedemann ...: sQGP has no quasi-particle description • QGP parametrization: EoS, viscosities • (obituary or revival of QPM?) • 2. bottom-up approach within AdS/QCD

  2. universe quarks & gluons SPS LHC RHIC AGS SIS hadrons Andronic, PBM, Stachel: *

  3. Scales Confinement in Early Universe no specific relics (unless p + n) (contrary to BBN: 25% He) Milne coordinates HICs puzzle = entropy production (thermal.) proto-star in core collapse: t ~ 1 sec, T < 50 MeV quark cores? Neutron Stars Steiner et al., 1205.6871 - bursting NSs + photosperic expansion - transiently accreting NSs in quiescence

  4. Quasi-Particle Model Landau & Fermi liquids: adiabaticity & Pauli‘s exclusion principle Fermi gas  Fermi liquid no interaction interaction keeps spin, charge, momenta ... but modifies masses ... does not apply always: Luttinger fluid, ... in this spirit: QGP = Bose + Fermi gases masses = self-energies m(T) ~ T G(T), large T: G  g(pQCD)

  5. 2-Loop Approximation to CJT/Phi Funct.  1-loop self-energies + HTL self-energies  gauge invariance finite widths: Peshier-Cassing, Bratkovskaya

  6. Going to High Temperatures Fodor et al. Boyd et al. region of fit M.Bluhm Aoki et al.

  7. Peshier‘s Flow Equation given form Cauchy problem: initial values

  8. Susceptibilities: Test of mu Dependence  data: Allton et al., Nf = 2 10% problem

  9. data: Allton et al., Nf = 2

  10. also good agreement with Gavai-Gupta data for data: Allton et al., Nf = 2 sensible test of flow eq. & baryon charge carriers (no di-quarks etc. needed) F. Karsch: cumulants & fluctuations  HRG & QPM

  11. Purely Imaginary mu Nf = 4 M.P. Lombardo et al. QPM T=3.5,2.5,1.5,1.1 Tc cont. to real mu: polyn. cont. Roberge-Weiss Z3 symmetry I = II, I‘ = inflected I‘‘

  12. adjust QPM parameterization at to get 1. phase border line (= characteristic trought Tc) 2. p(T) data: Engels et al. PLB 1997 tests Peshier‘s flow eq. (chem. pot. degree of freedom), at least for Nf = 4 deg. quarks

  13. Viscous Fluids Intro: V. Greco water: Gluon Plasma AMY 2003 data: Meyer Nakamura, Sakai QPM

  14. QPM Viscosities Decomposition: EoS transp. Kinetic eq.: e.m. tensor: Relaxation time approx.:

  15. EoS pQCD: ad hoc strong coupling: Gubser, Buchel further details: Bluhm, BK, Redlich, PLB 2012, PRC 2011 2 Vosresensky et al. (2011): ambiguity of rel. time ansatz

  16. data: Boyd et al. Okoamoto et al. KSS

  17. instead of QCD AdS/YM Maldacena 1998 Witten 1998 Gubser et al. 1998 AdS5/CFT4 common symmetry group SO(2,d) super YM holography gravity5 QCD4 large-Nc YM Einstein + scalar field bottom-up approach: adjust V(phi) to EoS for free: drag & jet quentching, chir. symm. spectra of glueballs, hadrons ... quantitytive matching to QCD is difficult

  18. Panero: mild/no dependence non-pert. EoS SU(3) YM4 I/T4 = T (p/T4)‘ e = I + 3p s = (I + 4p)/T cs2 = p‘ / (T p‘‘)

  19. Einstein4 Riemann space-time: glk;n = 0 Rij + gij R/2 = k Tij gravity/geometry gravity/geometry matter matter Gubser, Kajantie, Kiritsis Li et al. maximally symmetric AdS: , constant curvature negative L in Lorentz inv. vacuum: Tij = (e + p) uiuj + p gij -> - L gij (e < 0, p > 0) = 0 Einstein‘s GRG is well tested (PPN coefficients fit observations)

  20. Black Holes, e.g. Schwarzschild ds2 = f(r)-1 dr2 + r2 dO22 – f(r) dt2 f(r) = 1 – 2M/r: r H = 2M  horizon (simple zero) Hawking temperature Hawking-Bekenstein entropy Hawking‘s hairless theorem: M, Q, J s(T)  EoS Schwarzschild vacuole in Friedmann-Walker-Lemaitre universe BH Schwarzschild

  21. boundary conds.: z = 1/r zH horizon, IR z = 0 AdS, UV t, x 1st ansatz: 2nd ansatz: 3rd ansatz: AdS BH

  22. Transport Coefficients: Gubser 2008 fluctuations: linearize Einstein eqs. with phi as holographic coordinate (instead of r or z) Kubo formulae  shear mode: bulk mode:

  23. mimicks EoS

  24. Summary QPM parametrization of EoS: YM + QGP: mu = 0  T dep. susceptibilities: mu > 0, mu_u,d imaginary mu T  0, mu > 0: quark stars? AdS/YM: holographic improvement needed (EoS vs. V(phi) or As(z); pert. regime? eta = s / 4 pi vs. pert. Regime zeta(T), zeta/eta vs. (1/3 – vs^2) ) No specific relicts of cosmic confinement (memory loss) contrary to BBN next steps: fine tuning of V or As  robustness of zeta? spectral functions (no transport peaks) quarks, mu > 0 Kajantie et al. ... et al.

  25. Quark Matter in Neutron Stars? 1054 AD: supernova  radio pulsar X ray source

  26. p e, n Neutron Stars & White Dwarfs M / M_sun 2.0 Chandrasekhar stable 1.4 unstable n, (p, e-) e-, nuclei R [km] 10 20 10,000

  27. Neutron Stars with Quark Cores (1) M / M_sun 2.0 q Chandrasekhar stable 1.4 unstable n, (p, e-) e-, nuclei q p e, n R [km] 10 20 10,000

  28. T CEP q p mix Nf = 3 mix e, n n e1 e2 Neutron Stars with Quark Cores (2) M / M_sun • density jump e2/e1 is • very small: 1) • < 1.5: 2) • > 1.5: 3) 2.0 1) 2) 1.4 unstable 3) R [km] 10 20 10,000

  29. T CEP q p mix Nf = 3 mix e, n n e1 e2 The Third Island BK, PLB 1982 Stocker, Schaffner-B. 2000 M / M_sun 2.0 • density jump is • small and EoS(q) stiff: 1) • larger and/or EoS(q) soft: 2) 1) 1.4 2) R [km] 10 20 10,000

  30. Pure Quark Stars fit to Bielefeld & WuppertalBp data hybrid stars: sensitive to matching of EoS

  31. Examples of Side Conditions T = 1.1 Tc d u e solid: pure Nf=2 quark matter, electr.neutr. dashed: Nf=2 quark matter + electrons in beta equilibrium

  32. Gubser: V Li: As(z)

  33. mild increase (Gubser, Kiritsis) strong increase (Kharzeev, Tuchin Karsch et al.)

More Related