1 / 31

The Effect of Dopants on TiO 2 Solar Cell Efficiency Mini Project Presentation FS09

The Effect of Dopants on TiO 2 Solar Cell Efficiency Mini Project Presentation FS09. E. Buitrago Advisors: Dr. A. Teleki and A. Tricoli Particle Technology Laboratory Swiss Federal Institute of Technology (ETHZ). Overview. Introduction Global energy problem Solar Cell possibilities

hana
Download Presentation

The Effect of Dopants on TiO 2 Solar Cell Efficiency Mini Project Presentation FS09

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Effect of Dopants on TiO2 Solar Cell EfficiencyMini Project Presentation FS09 E. Buitrago Advisors: Dr. A. Teleki and A. Tricoli Particle Technology Laboratory Swiss Federal Institute of Technology (ETHZ)

  2. Overview • Introduction • Global energy problem • Solar Cell possibilities • Dye Sensitized Solar Cells • Narrowing the TiO2 bandgap: doping • Experimental • FSP particle synthesis • Photocatalytic Experiments • Bandgap Calculations • Results • Fe • Nb • Ru • Conclusion • Outlook • Future Work

  3. World Energy Use , US, 2006 http://www.flickr.com/photos/33264427@N06/3166865015/

  4. Solar Cell Possibilities $$$$$$ $$ http://en.wikipedia.org/wiki/File:PVeff(rev110707)d.png

  5. I- / I-3 Dye Sensitized Solar Cell (DSSC) Schematic Anode (-) 2 Cathode (+) 1 Wide bandgap semiconductor Eg = 3.2 eV ~ 385 nm (4) Visible light: 400-700 nm 1.8- 3.1 eV 3 A.R. U. Absorbance • Ru2+ → Ru3+ + e− • Anode (oxi): 3I−→I−3+2e− • Cathode (red): I−3+2e−→3I− 1. O’Regan et al. Nature . 1991. 2. Nazeeruddinet al. J.Am.Chem.Soc. 2001. 3. http://bouman.chem.georgetown.edu/S02/lect23/Solar_Spectrum.png\ 4. Grätzel et al. MRS Bulletin. 2005. 5

  6. Maximizing Visible Light Absorption: Dopants • 1. Grätzel et al. MRS Bulletin. 2005. • 2.Teoh et al. Catalysis Today. 2007 • 3. Khan et al. Appl. Surf. Sci. 2009 • 4. Salvador et al. Solar Energy Materials. 1980 0.03, 0.3, 1 mol% dopant

  7. FSP Particle Synthesis • TiO2: • 0.5 M TTIP in Xylene/Acetronile(3:1) • Dopant Precursors : • Fe: Iron Acetylacetonate • Nb: Niobium 2-Ethylhexaonate • Ru: Ruthenium (III) Acetylacetonate • 5/5 Flame d Mädler et al. J. Aerosol Sci. 2002

  8. Bandgap Calculations UV-vis Spectrometry Indirect Semiconductor hvα = const (hv-Eg)2 hv = energy of incident photon [eV] α = absorption coefficient [cm-1] α = A/l A = Absorbance (measured with UV-vis) l = cuvette length Singh et al. International Journal of Hydrogen Energy. 2008.

  9. Fe-TiO2 Bandgap and Rutile % 0.03 mol% Fe 0.3 1 Teoh et al. Catalysis Today. 2007.

  10. Photocatalytic Experiments with UV-Light 10 ppm Methylene Blue 8 W UV –lamp 366 nm Catalyst loading: 0.3 kg/m3 UV –Vis 665 nm http://en.wikipedia.org/wiki/Methylene_blue Height et al. Applied Catalysis B. 2005.

  11. UV-Photocatalytic Testing Fe-TiO2 -0.5 kg(catalyst)/m3 -Hydrothermal doping -366 nm -100 ppm MB

  12. Nb-TiO2 Bandgap and Rutile % Nb2O5 Eg = 3.4 eV 0.03 mol% Nb 0.3 1 Teleki et al. Sensor. Actuator. B.2007 Salvador et al. Solar Energy Materials. 1980.

  13. UV-Photocatalytic Testing Nb-TiO2

  14. Nb-TiO2 Outperforms TiO2

  15. Ru-TiO2 Bandgap and Rutile % Ru02Eg = 2.4 eV 0.03 mol% Ru 0.3 1 Gujar et al. Electrochemistry Communications. 2007.

  16. UV-Photocatalytic Testing Ru-TiO2

  17. Conclusion • TiO2 Bandgap reduced by FSP with Nb and Fe. • Highest bandgap reduction Fe- 1 mol%. • Highest photocatalytic activity under UV light for Nb-TiO2 at 0.3 mol% by (2.95 eV).

  18. Outlook • Investigation of photocatalytic activity under visible light for Fe. = 5 mol% -1 kg(catalyst)/m3 -FSP -λ > 400 nm -10 oxalic acid Teoh et al. Catalysis Today. 2007.

  19. Future Work • Synthesis of DSSC with best catalyst.

  20. Appendix • Bandgap Calculations • Photocatalytic Process

  21. Photocatalytic Process • Photo-generation of electron/hole pair • Formation of radicals (Ox) • Radical oxidation of organic compound Kim et al. Catalysis Letters. 2007

  22. Fe-TiO2 Fe3+ionicradius: 0.55 Å Ti4+ionicradius is: 0.67 Å Wikipedia Anatase Rutile 0.03 mol% Fe 0.3 1

  23. Nb-TiO2 Nb5+ ionic radius: 0.64 Å Ti4+ionic radius is: 0.68 Å Wikipedia Anatase Rutile 0.03 mol% Nb 0.3 1

  24. Ru-TiO2 Fe3+ionicradius: 0.57.5 Å Ti4+ionicradius is: 0.67 Å Wikipedia Anatase Rutile 0.03 mol% Ru 0.3 1

  25. Photocatalytic Testing with MB 0.004 mol% 0.04 mol% = 5 mol% -1 kg(catalyst)/m3 -Impregnation method n: Fe(NO3)3•9H2O a: Iron acetylacetonate complex -λ > 400 nm -5 ppm oxalic acid -0.5 kg(catalyst)/m3 -Hydrothermal doping -366 nm -100 ppm MB -0.5 kg(catalyst)/m3 -Impregnation method n: Fe(NO3)3•9H2O a: Iron acetylacetonate complex -300-400 nm -5 ppm oxalic acid -1 kg(catalyst)/m3 -FSP -λ > 400 nm -10 oxalic acid Teoh et al. Catalysis Today. 2007. Li et al. J. Hazardous Materias. 2008 Navío et al. Journal of Molecular Catalysis A. 1996.

  26. Bandgap Calculations Indirect Semiconductor hvα = const (hv-Eg)2 hv = energy of incident photon [eV] α = absorption coefficient [cm-1] α = A/l A = Absorbance (measured with UV-vis) l = cuvette length

  27. Bandgap Calculations Fe

  28. Bandgap CalculationsNb

  29. Bandgap Calculations Ru

  30. Energy TiO2 Bond Orbitals Conduction Band Ti d + (O2p) Ti d Eg = 3.2 eV O2p O2P + ( Ti d) Valence Band

More Related