1 / 49

Jennifer N. Victor University of Pittsburgh jnvictor@pitt.edu Gregory Koger University of Miami

Ted Kennedy, Orin Hatch, and Other Strange Bedfellows? A Network Explanation of Legislative Voting. Jennifer N. Victor University of Pittsburgh jnvictor@pitt.edu Gregory Koger University of Miami gkoger@miami.edu. Do Lobbyists “influence” legislators’ votes ? The media say “yes:”.

hani
Download Presentation

Jennifer N. Victor University of Pittsburgh jnvictor@pitt.edu Gregory Koger University of Miami

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Ted Kennedy, Orin Hatch, and Other Strange Bedfellows?A Network Explanation of Legislative Voting Jennifer N. Victor University of Pittsburgh jnvictor@pitt.edu Gregory Koger University of Miami gkoger@miami.edu

  2. Do Lobbyists “influence” legislators’ votes? The media say “yes:”

  3. Sources of Campaign Finance in 2006 Source: Center for Responsive Politics http://www.opensecrets.org/bigpicture/wherefrom.php?cycle=2006

  4. Influences on Voting • Constituents/public opinion (Achen 1978; Hill and Hurley 1999; Miller and Stokes 1963) • Representation of subgroups (Arnold 1990; Bartels 2008; Bishin 2000, 2009; Fenno 1978) • Parties/Party loyalty (Cox and Poole 2002; Lebo, McGlynn and Koger 2007; Lee 2008; Sinclair 2002) • Organized Interests (Mansbridge 2003; Ansolahebere, de Figueiredo, and Snyder 2003;

  5. (A related question) Why Donate? • Exchange/Access Theory • Campaign donations in exchange for votes or access • But: Reneging? Small donations? Non-PAC organizations? • Information Theory • Information persuades legislators • But: Why lobby allies? • Subsidy Theory • Lobbyists subsidize legislators • But: Other resources? Why pay to play?

  6. Lobbying, Networks, and Contributions • Legislators’ relationships with the lobbying community influence their voting behavior. • Emphasize the system of connections between legislators and lobbyist-donors, rather than the “transaction.” • Existing evidence that legislators and lobbyists desire long term relationships (Snyder 1990; Berry and Wilcox 2009). • Donations are observable evidence of relationships and common interests.

  7. Expectations • Ceteris paribus, we expect legislators who are more connected through the lobbying-donation network (directly or indirectly) to be more likely to vote the same way.

  8. Research Design • Federal donations by lobbyists in the 2006 election cycle (109th Congress) • Obtained from the Center for Responsive Politics • 20,639 donations by 1,225 lobbyists • Recipients • Candidates for Congress • National Party PACs • PACs, including Leadership PACs • 9,751 dyadic observations of lobbyist donations to MCs.

  9. The Lobbyist-Legislator Network • 2-mode network • 1-mode network A 1 B 2 C Lobbyists Legislators OR A B C 1 2 1 B 2 Legislators Lobbyists

  10. The Two-Mode Lobbyist-Legislator Network , 2006

  11. Descriptive Statistics: Number of lobbyist-donors

  12. Incumbent dyads with the most lobbyist-donors

  13. Point Connectivity • We aren’t just interested in the number of common donors legislators share, but how legislators are connected through the network. • Ties come in different forms: • Lobbyists [A,B] indirectly connect legislators [1,3] 1 A 2 B 3 Lobbyists Legislators

  14. Point Connectivity Lobbyists • We aren’t just interested in the number of common donors legislators share, but how legislators are connected through the network. • Ties come in different forms: • Lobbyists Reinforce Cleavages B D A C 1 2 3 4 Legislators

  15. Point Connectivity Lobbyists • We aren’t just interested in the number of common donors legislators share, but how legislators are connected through the network. • Ties come in different forms: • Lobbyist Ties Link Legislators B D A C 1 2 3 4 Legislators

  16. Distribution of Point Connectivity

  17. Distribution of Point Connectivity

  18. Top Incumbent Recipients (by chamber), by Point Connectivity

  19. Measures—Dependent Variables • Voting Agreement • The probability legislator a voted the same as legislator b, given that they both voted. • House: mean = 0.69, range: 0.1-1 • Senate: mean= 0.65, range: 0.26-0.98

  20. Regression, Inference, and Network Data • Analysis of Social Network data requires particular attention to: • Sampling • Autocorrelation • We want to model the relationships between observations. • Use a mixed model: (legislators nested in dyads). • Dyads (level 1, i); Legislators (level 2, j). • Include a legislator-specific random intercept, ζ1j,to capture unobserved heterogeneity between observations. • We assume the random intercept and residual are normally distributed ζj~N(0, ψ); εij ~N(0,θ)

  21. Expectations • Legislators who are more connected through thelobbyist-donors network are more likely to vote together. • CONTROLS: • Service on the same committees • Constituent Preferences • Party membership (same party) • Being from the same state • Being electorally vulnerable • Being a party/committee leader • Terms served • Demographics

  22. HOUSE Results

  23. SENATE Results

  24. Interpretation of Results

  25. Visualization of Results Random Senators (N=38) Actual Data: Most Central Senators in Lobby-Donor Network (N=38) Size of node = $ contributions Color of node = Non-leader = Leader Shape of node = in cycle = not up • Senate 38 most central actors (those with greater than mean degree centrality), opacity of tie indicates voting agreement, color indicates leadership, squares are in-cycle, circles are not. Compared to random data: more GREEN, more dark ties, more SQUARES, and LARGER nodes. Senate 38 random senators, opacity of tie indicates voting agreement, color party, squares are in-cycle, circles are not.

  26. Strange Bedfellows, House

  27. Strange Bedfellows, Senate

  28. Conclusions • Our innovations on the question of how/whether lobbyists influence legislators: • Look at lobbyists’ personal donations, not PACs • Use network analysis. • We find that, ceteris paribus, the stronger the connection between legislators in the lobbying network, the more likely the are to vote together. • Effect is stronger in the House than the Senate

  29. Conclusions • At the very least, lobbyists’ donation are indicative of legislators latent policy preferences. • Our data are also consistent with the relatively unsupported claim that lobbyists buy votes.

  30. Future Work • Representation • Which has more explanatory power: donations or constituents? • Power • Who is most central in the legislator network? • Ties • Can we predict who will donate/receive? • If lobbyists primarily seek relationships, there will be evidence of ties over time.

  31. Why Donate? Prof. Jennifer N. Victor

  32. EXTRA SLIDES

  33. Measures—Dependent Variables • Voting Agreement--House

  34. Measures—Dependent Variables • Voting Agreement--Senate

  35. The Network Approach • Why networks, and why now? • Not inconsistent with methodological individualism. • Network analysis considers the unit of analysis to be a relationship rather than the individual. • Politics is naturally about relationships. • Technology now makes it possible.

  36. The Network Approach • Network tools are particularly useful when we want to understand: • Flow of information i.e., voter contagion: Nickerson APSR 2008 • Coordination and cooperation i.e., collective action problems: Siegel AJPS 2009 • Informal institutions i.e., Caucuses: Victor & Ringe 2009 • Multiple levels of organizations i.e., international capitalism: Lazer 2005

  37. The Network Approach • Senate Co-sponsorship (Fowler 2006)

  38. The Network Approach • 2004 A-list Bloggers (Adamic and Glance 2005)

  39. The Network Approach: An Increasing Trend

  40. Anecdotal Support for Network Perspective • Quotes from lobbyists: ‘I don't usually give out my personal money unless I know the person and I feel like I've got some kind of respect and relationship with that person’ - Republican lobbyist Richard F. Hohlt as quoted in Carney 2007.

  41. Anecdotal Support for Network Perspective • Quotes from lobbyists: ‘I do not give for the purpose of having access. Virtually everyone I deal with in representation of a client I know personally and I have known personally for 10, 15, 20 years. So, when I enter, I enter on the basis of my credibility and the issues at hand, and not based upon the fact that I have contributed to an individual and am seeking access to that individual.’ -Former Rep. Tom Loeffer (R-TX) quoted in Carney 2007.

  42. Anecdotal Support for Network Perspective • Quotes from lobbyists: Tony Podesta says that personal relations, not a desire for access, drive his donations. ‘In every case, they are people I know, people who are friends, people I have a relationship with,’ he says. ‘It’s not a door-opener kind of thing. It’s rather an effort to keep in office or send to office people who are doing a good job.’ - Tony Podesta, Democratic lobbyist as quote in Carney 2007.

  43. Measures—Independent Variables • Common Lobbyist-Donors • Committee Coincidence • House: mean = 0.2, range: 0-3 • Senate: mean = 0.73. range: 0-4 • Ideological Distance • House: mean = 0.5, range: 0 – 1.9 • Senate: mean = 0.5, range: 0 – 1.9 • Same State: 0 (139,457) or 1 (4,996) • Electoral Vulnerability • House (Cook Competitive District):

  44. Measures—Independent Variables • Electoral Vulnerability, at least 1 • House (Cook Competitive District): 0 (81,406); 1 (14,297) • Senate (in cycle 2006): 0 (2,628); 1 (2,422) • Leadership (party, committee, cardinal) , at least 1 • House: 0 (69,378); 1(26,325) • Senate: 0 (1,275); 1 (3,775) • Senior, at least 1 greater than mean terms served • House: 0 (16,117); 1 (79,586) • Senate: 0 (828); 1 (4,222)

  45. Measures—Independent Variables • African-American, at least 1 • House: 0 (79,401); 1 (16,302) • Racial Minority, at least 1 • Senate: 0 (4,465); 1 (585) • Woman, at least 1 • House: 0 (69,378); 1 (26,325) • Senate: 0 (3,741); 1 (1,309)

More Related