340 likes | 530 Views
Reverberation Radius of Inner Dust Torus Suganuma et al. The Central Engine of Active Galactic Nuclei Xi’an, Oct. 16-21, 2006. “Reverberation Measurements of the Inner Radius of the Dust Torus in Nearby Seyfert 1 Galaxies’’. Masahiro Suganuma
E N D
Reverberation Radius of Inner Dust Torus Suganuma et al. The Central Engine of Active Galactic Nuclei Xi’an, Oct. 16-21, 2006 “Reverberation Measurements of the Inner Radius of the Dust Torus in Nearby Seyfert 1 Galaxies’’ Masahiro Suganuma ( National Astronomical Observatory of Japan ) with MAGNUM (Multicolor Active Galactic NUclei Monitoring) group: Y. Yoshii, T. Minezaki, H. Tomita, T. Aoki, S. Koshida (University of Tokyo) Y. Kobayashi (National Astronomical Observatory of Japan) K. Enya (Japan Aerospace Exploration Agency) B. A. Peterson (Australian National University)
Reverberation Radius of Inner Dust Torus Suganuma et al. The Central Engine of Active Galactic Nuclei Xi’an, Oct. 16-21, 2006 Outline: • Introduction: • What determine the inner radius of the dust torus ? • Where is the inner border of the dust torus located being compared with other regions of AGNs ? • Principles of dust reverberation method • Monitoring observations and results • Simultaneous photometric monitoring in Opt. / NIR • Clear lag time detections between V-band var. and K-band var. • Discussion
Reverberation Radius of Inner Dust Torus Suganuma et al. The Central Engine of Active Galactic Nuclei Xi’an, Oct. 16-21, 2006 Main Focus Urry & Padovani (1995) 1. What determine the inner radius? Sublimation temperature of grains (graphite) = const. -> The radius should to be proportional to L0.5UV 2. Where is the border located being compared with other regions? Unified scheme of AGNs expect it to be outside of BLR Thermal dust reverberation can resolve the inner border of dust torus by means of differences of flux variations between optical and near-infrared.
Reverberation Radius of Inner Dust Torus Suganuma et al. The Central Engine of Active Galactic Nuclei Xi’an, Oct. 16-21, 2006 V-band K-band NIRUV/Opt.NIR Flux Power-law Black-body (T=1500-1800K) c t Time lag time t Thermal dust reverberation of AGNs.
Reverberation Radius of Inner Dust Torus Suganuma et al. The Central Engine of Active Galactic Nuclei Xi’an, Oct. 16-21, 2006 Xi’an Tokyo Honolulu Monitoring Observation of AGNs 2-m optical / infrared robotic telescope (since Aug. 2000) Maui Island Top of Mt. Haleakala (3050m) Los
Reverberation Radius of Inner Dust Torus Suganuma et al. The Central Engine of Active Galactic Nuclei Xi’an, Oct. 16-21, 2006 V-band K-band +2 Lag time =48days -3 First Result NGC 4151 Vnuc=15.4mag 1242 km/s (3KCMB) Minezaki et al. (2004) ApJL, 600, 35
Reverberation Radius of Inner Dust Torus Suganuma et al. The Central Engine of Active Galactic Nuclei Xi’an, Oct. 16-21, 2006 NGC 5548 Vnuc=15.4mag 5359 km/s (3KCMB) t = 53-6+3days t = 48-2+3days t = 47-5+5days Succeeding results DSS R-band image
Reverberation Radius of Inner Dust Torus Suganuma et al. The Central Engine of Active Galactic Nuclei Xi’an, Oct. 16-21, 2006 t = 11-4+4days t = 11-4+6days t = 18-4+6days NGC 4051 Vnuc=15.2mag 924 km/s (3KCMB) DSS Bj-band image
Reverberation Radius of Inner Dust Torus Suganuma et al. The Central Engine of Active Galactic Nuclei Xi’an, Oct. 16-21, 2006 t = 20-6+5days NGC 3227 Vnuc=14.4mag 1480 km/s (3KCMB) DSS Bj-band image
Reverberation Radius of Inner Dust Torus Suganuma et al. The Central Engine of Active Galactic Nuclei Xi’an, Oct. 16-21, 2006 t = 65-13+29days t = 87-14+18days NGC 7469 Vnuc=14.5mag 4521 km/s (3KCMB) DSS R-band image
Reverberation Radius of Inner Dust Torus Suganuma et al. The Central Engine of Active Galactic Nuclei Xi’an, Oct. 16-21, 2006 F 9 (Clavel et al. +89) GQ Comae (Sitko et al.+93) N 3783 (Glass +92) N 7469 N 4151 N 5548 Mrk 744 (Nelson +96) N 4151 (Oknyanskij et al. +99) N 4051 N 3227 Lag time vs. Optical Luminosity After this work Before MAGNUM Minezaki et al. (2004) and references therein (nucleus)
Reverberation Radius of Inner Dust Torus Suganuma et al. The Central Engine of Active Galactic Nuclei Xi’an, Oct. 16-21, 2006 Lag time vs. Optical Luminosity with BLR lags NIR(K-band) Broad Emission Line F9: Clavel et al. (+89) Rodriguez-Pascual et al. (+97) Peterson et al. (04) N3783: Reichert et al. (+94) N7469: Wanders et al. (+97) Kriss et al. (00) Collier et al. (+98) N5548: Peterson et al. (02) Krolik et al. (1991) Peterson & Wandel. (+99) Dietrich et al. (+93) Korista et al. (+95) N4151: Clavel et al. (+90) Maoz et al. (+91) Kaspi et al. (+96) • Broad-emission line lags for objects that also have infrared lags • Including Hi & Lo ionization lines) (nucleus) N3227: Winge et al. (+95) Onken et al. (03) Shemmer et al. (04)
Reverberation Radius of Inner Dust Torus Suganuma et al. The Central Engine of Active Galactic Nuclei Xi’an, Oct. 16-21, 2006 RinL0.5 0.01-0.3 pc Inner size of the dust torus Supported Picture of Central sub-parsec of Seyfert 1 Galaxies BLR : Within inner border of dust torus Dust torus :
Reverberation Radius of Inner Dust Torus Suganuma et al. The Central Engine of Active Galactic Nuclei Xi’an, Oct. 16-21, 2006 Summary Lag time measurements between flux variation of V-band and K-band for nearby Seyfert 1 galaxies with MAGNUM telescope cleared that … • Inner radius of the dust torus is determined as being proportional to square root of its central luminosity. • Inner border of the dust torus is located near outer border of broad-emission line region (BLR). • There is tight correlation between optical luminosity and near-infrared lag with t L0.5opt . • Near-infrared lags are located on near the upper border of broad-emission line lags on L- t plane. In other words, it could be say that … ( Suganuma et al. 2006, ApJ 639, 46 )
ダスト領域の反響マッピング • ダストの熱平衡 : LUV/4πr2= 4<Qλ>σT4 • ダスト温度に上限(昇華温度~1500K) • ⇒ ダスト分布に内縁 時間遅延 (UV/可視連続波 → 近赤外連続波) ~ダストトーラス内縁半径÷c
粗いサンプリング(間隔~<1ヶ月) • 文献データの寄せ集め K光度曲線 K光度曲線 V光度曲線 V光度曲線 Mrk 744 (Nelson 1996) NGC 4151 (Oknyanskij et al. 1999) 過去のダスト反響観測 時間遅延(UV/可視→2μm)の報告は数例 ⇒ 専用望遠鏡によるインテンシブかつ 長期観測が必要
菅沼修士論文 • この形式の雲モニター(すばる、 岡山等)のオリジナル • Suganuma et al. in preparation 赤外線雲モニター 無人自動観測の実現 • 遠隔監視システム • 自動観測条件判断 • 自動観測スケジューリング
赤外線(10μm)全天雲モニター 快晴 くもり うす雲
The optical and NIR monitoring observation since Jan. 2001 83 target objects of Seyfert 1 galaxies and radio-quiet quasars 2DF10322-0233, 2DF1138-0131, 2DF12203-0119, 2DF12254-0101, 2DF12474+0025, 2DF13451-0231, 2DF14382-0116, 2QZ1013+0028, 3C120, Akn120, EDR17174+5932, EDR17183+5313, IRAS03450+0055, IRASF21256+0219, KUV08217+4235, L107-351, LBQS00262+0244, LBQS10245-0021, LBQS1029-0047, LBQS13421+0155, MOA2001BLG5, MOA201BLG5, MS02448+1928, MS03574+1046, Mrk110, Mrk335, Mrk509, Mrk590, Mrk744, Mrk79, Mrk817, NGC2403_ulx, NGC3031, NGC3227, NGC4051, NGC4151, NGC4395, NGC4395d1, NGC4395d2, NGC4395d3, NGC4395d4, NGC4639, NGC5548, NGC7469, PG0844p349, PG0953+414, PG1613p658, PHL1070, Q2237+030, RXJ17591p6635, RXJ17595p6645, RXJ17597p6629, RXJ18003+6624, RXJ18003p6615, RXJ18006p6641, RXJ18009p6622, RXJ18012+6624, RXJ18012+6631, RXJ18012p6631, RXJ18015p6632, RXJ2138.2+0112, RXJ2156.7+1426, RXSJ11240+3110, RXSJ13129+2628, S0254+0101, S0257m0027, SDSS13091-0015, SDSS17205+6128, SDSS17230+5400, SDSS17244+6036, SDSS23264-0030, SDSSJ0007-0054, SDSSJ0207-0048, SDSSJ0315+0012, SDSSJ0943-0043, SDSSJ0957-0023, SDSSJ1004p4112, SDSSJ1024-0021, SDSSJ1044+0003, SDSSpJ1204m0021, TON730, mcg08-11-011 2005 2006 Observation continues until present.
参照星A-参照星B AGN-参照星 データ整約、測光 参照星は非変光星 測光エラー:σ<~0.01mag • イメージリダクション • アパーチャー測光 • 相対測光光度曲線
フラックス較正(←標準星) • シーイング補正 • 銀河フラックス見積もり (2次元プロファイルフィット) • 誤差1-2割 (オフセットはCCF解析に影響しない) 銀河フラックス 銀河フラックス データ整約、測光 AGN
光度曲線 • 可視 (U)BV: 細かな変動の存在。バンド間で同期。 • 赤外 HK: 可視よりも滑らか。可視に対して時間遅延。 NGC 5548
光度曲線 • 可視 (U)BV: 細かな変動の存在。バンド間で同期。 • 赤外 HK: 可視よりも滑らか。可視に対して時間遅延。 NGC 4051
光度曲線 • 可視 (U)BV: 細かな変動の存在。バンド間で同期。 • 赤外 HK: 可視よりも滑らか。可視に対して時間遅延。 NGC 3227
光度曲線 • 可視 (U)BV: 細かな変動の存在。バンド間で同期。 • 赤外 HK: 可視よりも滑らか。可視に対して時間遅延。 NGC 7469
観測天体の可視-近赤外SED • 可視:フラット • 近赤外:スティープ • 1μm付近に凹み
flux vs. flux diagram in the optical Vフラックス vs. Bフラックス • バンド間で同期 • フラックス変動量の比がバンド間で一定 • 変動量比から見積もる中心核カラー B-V~0.0-0.1
flux vs. flux diagram in the near-infrared K フラックス vs. H フラックス • 可視に比べて変動が滑らか • 変動量比から見積もる中心核カラー H-K~0.9-1.2 → Black body 1500-1800K
いかに誤差原因を 反映させるか? ⇒ τpeak の ヒストグラム 時間遅延の誤差評価 光度曲線(V,K)のモンテカルロシミュレーション ⇒ 多数のCCF(τ)
誤差の2大原因 • 観測フラックス誤差の伝播 (影響小) ⇒ フラックスランダマイズ法 • 変動のアンダーサンプリング (影響大) ⇒ 評価難しく過去に適当な手法が無い • これまでの手法: • 観測とは異なるモデル依存の光度曲線 (Maoz & Netzer 1989; White & Peterson 1994) • 観測データの間引き (Peterson et al. 1998) ⇒ 観測点間の変動を直接シミュレートする 手法を新しく導入。
観測点間の変動シミュレーション 光度曲線の Structure Function (SF) ⇒ 観測点間の変動不定量
シミュレーション光度曲線のSF Structure Function (SF) SFの再現 ⇒ 変動性質の再現 SF: 変動量と時間スケールの関係(→ Power Spectrum) 観測光度曲線のSF +
NGC 5548 中心核 15年間の可視変動 AGN Watch λ5100Å (Peterson et al. 2002) MAGNUM Vバンド 活動銀河核の時間変動 • 数日~数年スケールの変動の確率過程的重ね合わせ • 活動銀河核の一般的性質