280 likes | 448 Views
X. Higgs Bosonen in Supersymmetrie. Standard Modell: 1 komplexes Higgs Duplett (4 Komponenten) 1 Vakuumerwartungswert u/Ö2 = 174 GeV 3 massive Eichbosonen (W + , W - , Z 0 ) Eine mögliche Anregung übrig: 1 neutrales Higgs Boson h Supersymmetrie
E N D
X. Higgs Bosonen in Supersymmetrie • Standard Modell: • 1 komplexes Higgs Duplett (4 Komponenten) • 1 Vakuumerwartungswert u/Ö2 = 174 GeV • 3 massive Eichbosonen (W+, W-, Z0) • Eine mögliche Anregung übrig: • 1 neutrales Higgs Boson h • Supersymmetrie • 2 komplexe Higgs Dupletts (8 Komponenten) • 3 massive Eichbosonen (W+, W-, Z0) • 5 mögliche Anregungen übrig: • 3 neutrale Higgs Bosonen: h, H, A • 2 geladene Higgs Bosonen: H+, H- • In niedr. Ordnung 2 Parameter :tan = u2/u1undmA
X.1. Higgs Phänomenologie in Supersymmetrie • In mehr Detail (Martin, 7.1.) • 2 komplexe Isospindupletts 8 reelle skalare Felder • 3 Goldstone Felder (G+, G0, G-) verschwinden in massiven W+, Z0, W- • Verbleiben 3 neutrale (h0, H0, A0) und 2 geladene (H+, H-) Higgs Bosonen
MSSM on tree level • Minimal Supersymmetry: • 3 neutral Higgs Bosons: h, H, A • 2 charged Higgs Bosons: H+, H- • at tree level, 2 parameters : tan = v2/v1 and mA • Stephen Martin, hep-ph/97-09356 • gMSSM =xgSM
MSSM at 2-loop level S.Heinemeyer in J.Ellis et al CERN-PH-TH/2007-012 • Loop level (constrained MSSM): • SUSY breaking parameters, assumed to be unified at some scale : • gluino mass and Higgs mass parameter Mğand • SU(2) gaugino mass term unified at MGUT M2 at MEW • sfermion mass terms : common at MEW Msusyat MEW • sfermion trilinear couplings : common at MEW A at MEW mixing parameter in the stop sector : Xt= At - cot • Total:8parameters • mt=171.4 GeVmeasured • M2, Msusy, Mğ, and Xtchosen to define a “benchmark scenario” • tan and mA free to vary (tan[1, 50] and mA[50, 1000]GeV) • Higgs Masses • A ~ degenerate in mass with • h at low masses • H and H± high masses • h mass < 130 GeV (all scenarios)
Benchmark scenarios • Examples: Description: http://arxiv.org/abs/hep-ph/0202167M. Carena, S. Heinemeyer, C.E.M. Wagner, G. Weiglein
Easy patternfor large mA • Features of • LargemA and mH: • a = b ± 90° • h is SM-like w/ maximal mass • gMSSM =xgSM • H/A/H±produced via Fermion-couplings! • Large enhancement of SUSY-Higgs ~(tan)2possible • Large tan:b- associated production • Small tan:t- associated production
Example: WidthsandBranchingRatiostott • From Ph.D. thesis, Jana Schaarschmidt, TU Dresden, 2010 • Widths • H,A:enhanced by tan b • h:above m ~ 200 GeVSM-like (narrow) • Branching ratios • SM:tt negligible above 160 GeV • SUSY:tt always sizableincreasing w/ tan bA and H
Can we see the additional Higgses? • good news: • at least one Higgs boson observable for all parameters in all four MSSM benchmark scenarios • bad news: • significant area where only lightest Higgs boson h is observable • e.g. Higgs discovery, ATLAS prel., 300 fb-1 (M. Schumacher, hep-ph/0410112, ATL-com-phys-2004-070)
X. 2. Search for Neutral Higgs Bosons • How to discover?
Associate A/H production with b-quarks • Basic 2 2 diagram • Corresponding to b-pdf in Proton • Details much more complex • Add 23, 22, and 21 w/o double counting • Solution: SHERPA MC generator w/ CKKW matchingbetween Matrix Element and Parton Shower contributions • Jet fractions agree with analytic calculation (Harlander+Kilgore) • Example: full (down-type) leptonic modes • b h/H/A b µ+µ- • b h/H/A b t+t- b ℓ+νν ℓ-νν • Main backgrounds (several 100 pb) • tt (b)b µ+ν µ-ν tt (b)b ℓ+ν ℓ-ν • qZ ‘‘b‘‘µ+µ- qZ ‘‘b‘‘t+t-
MassResolutions tan b = 15, mA=132 GeV tan b = 15, mA=150 GeV M.Warsinsky, DoktorarbeitDresden, 200814 TeV, 30 fb-1~ 2014 / 2015 J.Schaarschmidt, DiplomarbeitDresden, 2007 14 TeV, 30 fb-1~ 2014 / 2015 • µ+µ-: exzellente Massenauflösung ~ 3 GeV • h/A/H trotzdem nicht getrennt, aber Breite messbar • t+t-: gröbere Massenauflösung 30 - 40 GeV • benutzt kolineare Näherung des Tau Zerfalls
tt Leptonnn + Hadronsn (ATLAS) • Typical signal and background distributions at 14 TeV without b-Jet with b-Jet
Extraction of Z ttbackground mttshapefromdata • Use Zmm and Zee and reweight the lepton signals • ttmnn mnn : Just needs reweighting of track momenta • ttenn enn : Needs also reweighting of *longitudinal* shower shape • Very successful results Zmm (Jana Schaarschmidt, 2007) Zee (Kathrin Leonhardt, 2008, Patrick Czodrowski, 2009)
Expectedsensitivities • Estimated reach after 1 fb-1 at 7 TeV (maybe end of 2011?) • Discovery reach after 30 fb-1 at 14 TeV (2014/2015?)
X.3. Charged H± • Mass and Couplings: • mH±2 = mA2 + mW2 in MSSMw/ negligible radiative corrections • No coupling to W, Z • Two fermionic couplings dominant: • Minimum tb coupling at tan b = √(mt / mb ) ≈ 7
LEP Limits • Direct LEP limits for e+e- H+H-stop at ~mW due to W+W- backgr. • MSSM: BR(H±tn) dominant for mH± < mt mH± >~ 85 – 89 GeV • LEP direct H± limits: • Relevant in non-SUSY 2-Higgs Doublet Models (2HDM) • Marginal in MSSM, since mH±2 = mA2 + mW2 anyway
Search for Charged Higgs Bosons • New input from b-physics!
Newly developping constraints from b-decays • Gino Isidori, 3rd Workshop: Flavour in the Era of the LHC, 2006 • Well defined pattern for exp. observables • Starting to give useful constraints • Most limits in literature for 2HDM !No systematic studies for MSSM yet (too many param.!)
B tn: New Physics t± t± ~ ~ rBtn e0tanb » 1 • Leading-order H± contribution! • 2HDM (W.S.Hou, PRD 48 (1993) 2342) • rBtn= BR(2HDM)/BR(SM) = • MSSM (G.Isidori, P.Paradisi, hep-ph/0605012) • Gluino-induced corrections (e0(mg,mq) ~ 10-2)to down-type Yukawa couplings considerable for large tanb • rBtn= BR(MSSM)/BR(SM) = • Amplitude M(H±) has opposite sign! • suppression • |M (H±)| < |M (W±)| • (near-)cancellation • |M (H±)| ~ |M (W±)| • (near-)compensation • |M (H±)| ~ 2|M (W±)| • enhancement • |M (H±)| > 2|M (W±)|
B tn: First Observations C.Bozzi, HCP2007 2.6s
MSSM interpretation of B- andotherconstraints • G. Isidori, F. Mescia, P. Paradisi, D. Temes: hep-ph/0703035 • 1.01 < Rbsg < 1.24 (1 sigma): blue lines • 0.8 < R‘Btn < 0.9 (future guess!): black lines • current 1-sigma would be 0.7 < R‘Btn < 1.3 • NB: 2nd solution for mH < 200GeV not shown! • B → μ+μ− < 8.0 × 10−8: allowed below green line • DmBs = 17.35 ± 0.25 ps−1 : allowed below gray line • (g-2)μ: 2 < aμ(exp− SM)/10−9 < 4 : purple lines • Dark Matter (~Bino) density: light blue forbidden M˜q= 1.5 TeV AU= −1 TeVμ = 0.5 TeVM˜ℓ = 0.3 TeV M˜q= 1.5 TeV AU= −1 TeVμ = 1.0TeVM˜ℓ = 0.4 TeV
H± at LHC H±(fb) 95 130 170 215 310 mH±(GeV) t± M. Schumacher, ATL-com-phys-2004-070 H± t H± • Two main production processes • for mH±< mt • gg t t bW bH± • for mH±> mt • bg tH± bW H± • Two main decay modes • H± tn, dominant for “small“ mH± • below 200 GeV (large tan b > 10) • below 150 GeV (small tan b) • H± tb,approaches for “large“ tan b • BR(tb)/BR(tn) = (mb/mt)2 ~ 6
H± Discovery reach(ATLAS, TDR 2008) • z.B. für mH±> mt : tH± bW tn • Transversale Massenverteilung nach 30 fb-1 • Entdeckungs und Ausschlusspotenzial (Alle Kanäle kombiniert) ~