450 likes | 643 Views
LH e C. John Dainton Cockcroft Institute and Univ Liverpool , Daresbury Science and Innovation Campus, GB and the University of Liverpool, GB. with M Klein ( Univ Liverpool ) P Newman (Univ Birmingham), E Perez (CERN) F Willeke (DESY Hamburg and BNL) and more and more …… !. Why How
E N D
LHeC John Dainton Cockcroft Institute and Univ Liverpool, Daresbury Science and Innovation Campus, GB and the University of Liverpool, GB with M Klein (Univ Liverpool) P Newman (Univ Birmingham), E Perez (CERN) F Willeke (DESY Hamburg and BNL) and more and more …… ! • Why • How • 3. When • 4. Summary hep-ex/0603016, JINST 1 (2006) P10001, and DIS06 Proceedings
Why: Leptons Quarks ? •how are leptons and quarks related ? ICHEP86 Berkeley •put them together at the highest energy at finest detail
TeV eq Kinematic Reach e RL ? space-like >TeV ●2007: HERA -Q2 ≤ 30,000 GeV2 -seq≤ (300 GeV)2 in ~ 0.7 am 3×10-7 ●≥2016?: LHeC -Q2 ≤ 2×106 GeV2 -seq≤(2000 GeV)2 in ~ 0.1 am ! seq>TeV LHeC
Lepton+quark @ TeV ●leptoquark systems – new physics +SM LHC LHeC Re + resonance SM (hadronic) + signal LqLq productionS σ~ few × 0.1 fb (Λ=0.1) SM (electroweak) + signal Lq formation σ~ 100 fb (Λ=0.1)
Lepton+quark @ TeV ●leptoquark systems – new physics +SM 1 TeV
e * e q _ q e, _ q or q ? q e+ q or q ? e- Lepton+quark @ TeV LHC Lq pairs LHeC Lq formation+decay e+ F=0 e- F=2 fermion number _ _ defined formation (eLR) precision BRs (NC CC) inclusive coherence unique PWA SM + signal + interference qqgLq Lq production mechanism ? disentangle mass spectrum ? spin parity and chirality explsig jets + leptons jet+(lepton)+pT (im)balance
e * e q q e, q Lepton+quark @ TeV LHC Lq LHeC Lq formation+decay e+ F=0 e- F=2 fermion number _ defined formation (eLR) precision BRs (NC CC) inclusive coherence unique PWA SM + signal + interference gqLq l production mechanism ? disentangle mass spectrum ? spin parity and chirality explsig jet + leptons jet+(lepton)+pT (im)balance
Structure of Matter @ TeV Lepton+quark @ TeV ●unique chiral probe @ 0.0001 fm ? e ●70 7000 GeV e±p cm energy 1400 GeV e Manchester ● Cambridge Chadwick SLAC Q2 y nucleus e x nucleon RL protons+neutrons Z W quark ? QCD ● NC+CC+gluon g+EW SM + new Lq physics @ ~ 0.0001 fm ? SM + q structure @ ~ 0.0001 fm ? LHeC ?
Unification ? •precision QCD at highest energy ●short distance structure of SM+ -2007 @ 10-9 -2007 GF@ 10-5 -2007 G@ 0.1% -2007 S @ 1-2% -LHeC + detector S few/mil ● precision discovery probe new chromodynamic physics – beyond SM ?
Heavy Flavour in HadronChromodynamics Lepton+quark @ TeV ●unique chiral probe @ 0.0001 fm ? ●70 7000 GeV e±p cm energy 1400 GeV e e Manchester ● Cambridge Chadwick SLAC Q2 y NC + Z nucleus e nucleon RL b protons+neutrons x Z W quark ? ● NC+CC+gluon g+EW SM + new Lq physics @ ~ 0.0001 fm ? SM @ ~ 0.0001 fm heavy flavour LHeC ?
Heavy Flavour in HadronChromodynamics …… …… underpins discovery ●Higgs at LHC what we know now what we could know X=? what we have to find
"Most of the mass of ordinary matter is concentrated in protons and neutrons. It arises from …[a]… profound, and beautiful, source. Numerical simulation of QCD shows that if we built protons and neutrons in an imaginary world with no Higgs mechanism - purely out of quarks and gluons with zero mass - their masses would not be very different from what they actually are. Their mass arises from pure energy, associated with the dynamics of confinement in QCD, according to the relation m=E/c2. This profound account of the origin of mass is a crown jewel in our Theory of Matter.’’ Frank Wilcek CERN October 11, 2000 Why: Dense Colour? •the origin of mass in the Universe •probe hadronic matter at highest parton density at lowest Bjørken-x
Growing Field Energy Density TeV eq Kinematic Reach ●2007: HERA ●≥2016?: LHeC -Q2 ≥ 1 GeV2 -Q2 ≥ 1GeV2 space-like >TeV -xBj≥ 5×10-5 -xBj≥ 5×10-7 e e Q2 y x 3×10-7 seq>TeV LHeC
Gluon recombination Growing Field Energy Density •Q2 size of gluons ●≥2016?: LHeC -Q2 ≥ 1 GeV2 •xBj phase space for gluons -xBj≥ 5×10-7 e e Q2 y x low x large nuclei
Gluon recombination @ LHeC ●epsaturation Q2 ≤ 5 GeV2 eAsaturation Q2 ≤ 20 GeV2
DGLAP Dense Chromodynamics ●low-xrise of F2 -LHeC: precision eg x > 3×10-3 @ Q2=10000 GeV2 x =βxI P I P @ low-β ●low x physics of P QCD reggeon calculus ? I
Proton beam ●”standard” LHC protons … with electrons? antiprotons protons protons electrons? protons Np εpN
ep Luminosity ●few 10s GeV electrons (LEP = 70 GeV!) ●RF power = 50 MW = 0.86 LEP = 28% CERN site ●RF power = synchrotron radiation Ie= 74 mA luminosity 74×10-3×1.67×1011×7000/.938 = “perfect” bunch x-ing 4π×1.6×10-19×3.75×10-6× (m2) cm-2 s-1 L = 1.15×1033/ L ~ 1033 cm-2s-1 for reasonable p-beam β ~ 1 m
e±p Luminosity ●astounding ! ●×102LNMCμp @ 0.01 fm ●LeRHICepolppoleA @ 0.007 fm ●×102LHERA epolp @ 0.001 fm ●LLHeCe±p eA @ 0.00014 fm indisputably a next step … is it feasible ?
Lepton Ring ●in LEP tunnel … so like LEP - FODO in eight arcs β-tron phase advance φH=108oφV=90o - bending radius 3133.3 m - (δE/Ebeam)rms = 1.1×10-3 - SR 26 W/cm (Ec=254 KeV) - scRF @ 1GHz resonators @ 12 MV/m 100 m structure = 670 cells sync. phase 31o bucket takes 10× (δE/Ebeam)rms - unlikely e-beam instability single bunch current modest impedance << LEP 8 7 1 6 2 5 3 4 LEP=9 W/cm HERA=13.5 W/cm scRF proven @ > 6 MV/m
ep Collisions ●afterB physics @ LHC e p civil engineering tunnel 2×250m×2m Ø @IP LHeC ep alongsidepp data-taking @ LHC
Interaction Region ●highest lumi - low βe close sc quads - low X-ing angle “hard” bend SR fan sc p-beam « HERA - “crab” RF cavity p-bunch rotation top elevation “crabbed” (rotated) p-bunch V-displaced 3.4 kW 3.2 kW 11.4 kW 3.5 mrad 0.5 mrad ●1o beam access = low-lumi/low-x option (cf HERA)
Operational Luminosity ●beam-beam - “hour-glass” - dynamic β: < HERA - long range beam-beam (parasitic interactions): marginal operational luminosity
LHeC ●tunnel exists (LEP, LHC) ●injection once existed (LEP) ? ●operating p-beam (from 2008) ●operating A-beam (from 2008) ●epeA operating alongside pppAAA ●the TeV ep collider! ●”minimal” mods to LHC! ●LHC upgrade ●cost ?
IR and Experiment ●IR ±many m ●IR ≥9.4o around beam
Asymmetric Collider ●asymmetric beam momenta: LHeC ~ TeV quark quads ? e 70 GeV p 7 TeV electron ●”forward” hemisphere detection to multiTeV topological challenge precision challenge
Timeline ●2007: form working groups + steering committee initial meeting of conveners + committee SAC overview ●2008: workshop I ●2009: workshop II LHeC Design Study [LHCC] ●2011: TDR - construction 8 years - installation e-ring above LHC ~1 year - LHeC part of LHC upgrade - be aware of CLIC progress
Working Group Structure • Accelerator (injector, ring) • Interaction region • Detector • The new physics • High precision QCD • Low x physics • eA tbc (SAC)
Joel Feltesse (Saclay/DESY) Roland Horisberger (PSI) Guido Altarelli (Roma) Stephen Myers (CERN) Rolf Heuer (DESY) Stan Brodsky (SLAC) Aharon Levy (Tel Aviv) Roland Garoby (CERN) Lev Lipatov (Petersburg) Richard Milner (MIT) Allen Caldwell (MPI Muenchen) Ferdy Willeke (DESY/BNL) Swapan Chattopadhyay (Cockcroft Inst) John Ellis (CERN) Young-Kee Kim (Fermilab) Peter Bond (BNL) Jos Engelen (CERN) John Dainton (Univ Liverpool) LHeC Scientific Advisory Committee
Now ●LHeC 70e 7000p GeV - can be built - has startlingly good luminosity ≥ 1033 cm-2s-1 grows with LHC pp luminosity - adds substantially, uniquely, and with synergy to LHCTeVdiscovery physics - probes chromodynamics @ new density frontier in uniquely comprehensive manner with unchallengable precision synergetically with LHC pppAAA
Lepton + quark @ TeV ●energy for eq discovery extreme chromodynamics ●precision for eq discovery eq understanding extreme chromodynamics ●luminosity for eq discovery LHeC and LHC LHeC and ILC LHeC and LHC
In case you were wondering … ? Sir John Cockcroft … doing accelerator physics ca 1950 … … with 1950 DAQ – pencil and paper! … with 1950 graphics – ammeter! voltmeter!
Lepton-Parton and Parton-Parton ? •ep eX •pp (jet+jet)X probe-parton jet e ? ? RL g q Z W ? ? jet •pp energy scale: 70007000 GeV •LHeC energy scale: 707000 GeV probe+p at LHeC scale xprobe/p = 0.01
LHC probe parton ●probe-parton @ x 0.01 -xq = xU +xD +xU +xD g :q ~ 2:1 ●probe-parton @ x » 0.01 g :q 0 “mixed” LHC probe @ LHeC energy q LHC probe @ LHC top energy
Lepton-Parton and Parton-Parton •pp (jet+jet)X •ep eX probe-parton jet e ? ? RL g q Z W ? ? jet •precise probe e •precise kinematics •smaller kinematic reach but - eqeq “formation” TeV - precision at lower xBj≥10-7 •probeg and q •kinematics ? •larger kinematic reach x larger probe q q/gq/geqeq pair production
Polarisation @ LHeC Barber
What’s been achieved ●Sokolov-Ternov + spin-rotators @ HERA
What’s been achieved ●Sokolov-Ternov @ LEP70 GeV
Diffraction and Rapgap ●rapgap @ LHeC? HERA LHeC ~ 3 ηmax rapgap ηproton I P + R I