1 / 45

LH e C

LH e C. John Dainton Cockcroft Institute and Univ Liverpool , Daresbury Science and Innovation Campus, GB and the University of Liverpool, GB. with M Klein ( Univ Liverpool ) P Newman (Univ Birmingham), E Perez (CERN) F Willeke (DESY Hamburg and BNL) and more and more …… !. Why How

harley
Download Presentation

LH e C

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. LHeC John Dainton Cockcroft Institute and Univ Liverpool, Daresbury Science and Innovation Campus, GB and the University of Liverpool, GB with M Klein (Univ Liverpool) P Newman (Univ Birmingham), E Perez (CERN) F Willeke (DESY Hamburg and BNL) and more and more …… ! • Why • How • 3. When • 4. Summary hep-ex/0603016, JINST 1 (2006) P10001, and DIS06 Proceedings

  2. Why?

  3. Why: Leptons  Quarks ? •how are leptons and quarks related ? ICHEP86 Berkeley •put them together at the highest energy at finest detail

  4. TeV eq Kinematic Reach e RL ? space-like >TeV ●2007: HERA -Q2 ≤ 30,000 GeV2 -seq≤ (300 GeV)2 in ~ 0.7 am 3×10-7 ●≥2016?: LHeC -Q2 ≤ 2×106 GeV2 -seq≤(2000 GeV)2 in ~ 0.1 am ! seq>TeV LHeC

  5. Lepton+quark @ TeV ●leptoquark systems – new physics +SM LHC LHeC Re + resonance SM (hadronic) + signal LqLq productionS σ~ few × 0.1 fb (Λ=0.1) SM (electroweak) + signal Lq formation σ~ 100 fb (Λ=0.1)

  6. Lepton+quark @ TeV ●leptoquark systems – new physics +SM 1 TeV

  7. e * e q _ q e, _ q or q ? q e+ q or q ? e- Lepton+quark @ TeV LHC Lq pairs LHeC Lq formation+decay e+ F=0 e- F=2 fermion number _ _ defined formation (eLR)  precision BRs (NC CC) inclusive coherence unique PWA SM + signal + interference qqgLq Lq production mechanism ? disentangle mass spectrum ? spin parity and chirality explsig jets + leptons jet+(lepton)+pT (im)balance

  8. e * e q q e, q Lepton+quark @ TeV LHC Lq LHeC Lq formation+decay e+ F=0 e- F=2 fermion number _ defined formation (eLR)  precision BRs (NC CC) inclusive coherence unique PWA SM + signal + interference gqLq l production mechanism ? disentangle mass spectrum ? spin parity and chirality explsig jet + leptons jet+(lepton)+pT (im)balance

  9. Structure of Matter @ TeV Lepton+quark @ TeV ●unique chiral probe @ 0.0001 fm ? e ●70 7000 GeV e±p cm energy 1400 GeV e Manchester ● Cambridge Chadwick SLAC Q2 y nucleus e x nucleon RL protons+neutrons  Z W quark ? QCD ● NC+CC+gluon g+EW SM + new Lq physics @ ~ 0.0001 fm ? SM + q structure @ ~ 0.0001 fm ? LHeC ?

  10. Unification ? •precision  QCD at highest energy ●short distance structure of SM+ -2007 @ 10-9 -2007 GF@ 10-5 -2007 G@ 0.1% -2007 S @ 1-2% -LHeC + detector  S few/mil ● precision  discovery probe new chromodynamic physics – beyond SM ?

  11. Heavy Flavour in HadronChromodynamics Lepton+quark @ TeV ●unique chiral probe @ 0.0001 fm ? ●70 7000 GeV e±p cm energy 1400 GeV e e Manchester ● Cambridge Chadwick SLAC Q2 y NC  + Z nucleus e nucleon RL b protons+neutrons x  Z W quark ? ● NC+CC+gluon g+EW SM + new Lq physics @ ~ 0.0001 fm ? SM @ ~ 0.0001 fm heavy flavour LHeC ?

  12. Heavy Flavour in HadronChromodynamics …… …… underpins discovery ●Higgs at LHC what we know now what we could know X=? what we have to find

  13. "Most of the mass of ordinary matter is concentrated in protons and neutrons. It arises from …[a]… profound, and beautiful, source. Numerical simulation of QCD shows that if we built protons and neutrons in an imaginary world with no Higgs mechanism - purely out of quarks and gluons with zero mass - their masses would not be very different from what they actually are. Their mass arises from pure energy, associated with the dynamics of confinement in QCD, according to the relation m=E/c2. This profound account of the origin of mass is a crown jewel in our Theory of Matter.’’ Frank Wilcek CERN October 11, 2000 Why: Dense Colour? •the origin of mass in the Universe •probe hadronic matter at highest parton density at lowest Bjørken-x

  14. Growing Field Energy Density TeV eq Kinematic Reach ●2007: HERA ●≥2016?: LHeC -Q2 ≥ 1 GeV2 -Q2 ≥ 1GeV2 space-like >TeV -xBj≥ 5×10-5 -xBj≥ 5×10-7 e e Q2 y x 3×10-7 seq>TeV LHeC

  15. Gluon recombination Growing Field Energy Density •Q2 size of gluons ●≥2016?: LHeC -Q2 ≥ 1 GeV2 •xBj phase space for gluons -xBj≥ 5×10-7 e e Q2 y x low x large nuclei

  16. Gluon recombination @ LHeC ●epsaturation Q2 ≤ 5 GeV2 eAsaturation Q2 ≤ 20 GeV2

  17. DGLAP Dense Chromodynamics ●low-xrise of F2 -LHeC: precision eg x > 3×10-3 @ Q2=10000 GeV2 x =βxI P I P @ low-β ●low x physics of P QCD  reggeon calculus ? I

  18. 2.How?

  19. Proton beam ●”standard” LHC protons … with electrons? antiprotons protons protons electrons? protons Np εpN

  20. ep Luminosity ●few 10s GeV electrons (LEP = 70 GeV!) ●RF power = 50 MW = 0.86 LEP = 28% CERN site ●RF power = synchrotron radiation Ie= 74 mA luminosity 74×10-3×1.67×1011×7000/.938 = “perfect” bunch x-ing 4π×1.6×10-19×3.75×10-6× (m2) cm-2 s-1 L = 1.15×1033/ L ~ 1033 cm-2s-1 for reasonable p-beam β ~ 1 m

  21. e±p Luminosity ●astounding ! ●×102LNMCμp @ 0.01 fm ●LeRHICepolppoleA @ 0.007 fm ●×102LHERA epolp @ 0.001 fm ●LLHeCe±p eA @ 0.00014 fm indisputably a next step … is it feasible ?

  22. Lepton Ring ●in LEP tunnel … so like LEP - FODO in eight arcs β-tron phase advance φH=108oφV=90o - bending radius 3133.3 m - (δE/Ebeam)rms = 1.1×10-3 - SR 26 W/cm (Ec=254 KeV) - scRF @ 1GHz resonators @ 12 MV/m 100 m structure = 670 cells  sync. phase 31o  bucket takes 10× (δE/Ebeam)rms - unlikely e-beam instability single bunch current modest impedance << LEP 8 7 1 6 2 5 3 4 LEP=9 W/cm HERA=13.5 W/cm scRF proven @ > 6 MV/m

  23. ep Collisions ●afterB physics @ LHC e p civil engineering tunnel 2×250m×2m Ø @IP LHeC ep alongsidepp data-taking @ LHC

  24. Interaction Region ●highest lumi - low βe close sc quads - low X-ing angle “hard” bend SR fan  sc p-beam « HERA - “crab” RF cavity p-bunch rotation top elevation “crabbed” (rotated) p-bunch V-displaced 3.4 kW 3.2 kW 11.4 kW 3.5 mrad 0.5 mrad ●1o beam access = low-lumi/low-x option (cf HERA)

  25. Operational Luminosity ●beam-beam - “hour-glass” - dynamic β: < HERA - long range beam-beam (parasitic interactions): marginal operational luminosity

  26. LHeC ●tunnel exists (LEP, LHC) ●injection once existed (LEP) ? ●operating p-beam (from 2008) ●operating A-beam (from 2008) ●epeA operating alongside pppAAA ●the TeV ep collider! ●”minimal” mods to LHC! ●LHC upgrade ●cost ?

  27. IR and Experiment ●IR ±many m ●IR ≥9.4o around beam

  28. Asymmetric Collider ●asymmetric beam momenta: LHeC ~ TeV quark quads ? e 70 GeV p 7 TeV electron ●”forward” hemisphere detection to multiTeV topological challenge precision challenge

  29. 3.When?

  30. Timeline ●2007: form working groups + steering committee initial meeting of conveners + committee SAC overview ●2008: workshop I ●2009: workshop II LHeC Design Study [LHCC] ●2011: TDR - construction 8 years - installation e-ring above LHC ~1 year - LHeC part of LHC upgrade - be aware of CLIC progress

  31. Working Group Structure • Accelerator (injector, ring) • Interaction region • Detector • The new physics • High precision QCD • Low x physics • eA tbc (SAC)

  32. Joel Feltesse (Saclay/DESY) Roland Horisberger (PSI) Guido Altarelli (Roma) Stephen Myers (CERN) Rolf Heuer (DESY) Stan Brodsky (SLAC) Aharon Levy (Tel Aviv) Roland Garoby (CERN) Lev Lipatov (Petersburg) Richard Milner (MIT) Allen Caldwell (MPI Muenchen) Ferdy Willeke (DESY/BNL) Swapan Chattopadhyay (Cockcroft Inst) John Ellis (CERN) Young-Kee Kim (Fermilab) Peter Bond (BNL) Jos Engelen (CERN) John Dainton (Univ Liverpool) LHeC Scientific Advisory Committee

  33. 4.Summary

  34. Now ●LHeC 70e 7000p GeV - can be built - has startlingly good luminosity ≥ 1033 cm-2s-1 grows with LHC pp luminosity - adds substantially, uniquely, and with synergy to LHCTeVdiscovery physics - probes chromodynamics @ new density frontier in uniquely comprehensive manner with unchallengable precision synergetically with LHC pppAAA

  35. Lepton + quark @ TeV ●energy for eq discovery extreme chromodynamics ●precision for eq discovery eq understanding extreme chromodynamics ●luminosity for eq discovery LHeC and LHC LHeC and ILC LHeC and LHC

  36. In case you were wondering … ? Sir John Cockcroft … doing accelerator physics ca 1950 … … with 1950 DAQ – pencil and paper! … with 1950 graphics – ammeter! voltmeter!

  37. Extras

  38. Lepton-Parton and Parton-Parton ? •ep eX •pp (jet+jet)X probe-parton jet e ? ? RL g q  Z W ? ? jet •pp energy scale: 70007000 GeV •LHeC energy scale: 707000 GeV probe+p at LHeC scale xprobe/p = 0.01

  39. LHC probe parton ●probe-parton @ x  0.01 -xq = xU +xD +xU +xD g :q ~ 2:1 ●probe-parton @ x » 0.01 g :q 0 “mixed” LHC probe @ LHeC energy q LHC probe @ LHC top energy

  40. Lepton-Parton and Parton-Parton •pp (jet+jet)X •ep eX probe-parton jet e ? ? RL g q  Z W ? ? jet •precise probe e •precise kinematics •smaller kinematic reach but - eqeq “formation” TeV - precision at lower xBj≥10-7 •probeg and q •kinematics ? •larger kinematic reach x larger  probe q q/gq/geqeq pair production

  41. Polarisation @ LHeC Barber

  42. What’s been achieved ●Sokolov-Ternov + spin-rotators @ HERA

  43. What’s been achieved ●Sokolov-Ternov @ LEP70 GeV

  44. Diffraction and Rapgap ●rapgap @ LHeC? HERA  LHeC ~ 3 ηmax rapgap ηproton I P + R I

More Related