1 / 22

inrdyS EMk ijEimqI

inrdyS EMk ijEimqI. Co-ordinate Geometry. AiDAwpk : pvndIp kum`r ( mYQ ). ivS` : gixq jm`q : nOvIN. s.s.s.skUl lq`l `, lUiDE`x `. sUcI. audyS inrdySAMk ijAimqI ivsQwr kwrtIjn smql kwrtIjn smql dIAW cOQwieAW Buj Aqy koit cwr cOQweIAW iv`c inrdyS AMkW dy inSwn is`tw AiBAws

harper
Download Presentation

inrdyS EMk ijEimqI

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. inrdySEMkijEimqI Co-ordinate Geometry AiDAwpk : pvndIpkum`r (mYQ) ivS` : gixq jm`q : nOvIN s.s.s.skUllq`l`, lUiDE`x`

  2. sUcI • audyS • inrdySAMkijAimqIivsQwr • kwrtIjnsmql • kwrtIjnsmqldIAWcOQwieAW • BujAqykoit • cwrcOQweIAWiv`cinrdySAMkWdyinSwn • is`tw • AiBAws • Biblography

  3. audyS iekGwqIsmIkrnAqy do GwqIsmIkrnWnUMgRwPivDIrwhI hl krnw[

  4. ihswbdwnrynydkwrqy ie`kidnjdoNauhAwpxyibsqrqyAwrwmkrirhwsIqWausnyie~ksmqlqyie`kibMdUdIsiQqIdwinrDwrxkrnnwlsMbMiDqsm`isAwdwh`ll`BilAw[ izvyikqusIdyKogyikausdIivDIAkSwSAqyryKWSdIpurwxIivcwrDwrwdwhIie~kivkisqrUpsI[ ie`ksmqldIie`kibMdUdIsiQqIdwinrDwrxkrniv`cjrUrIpRxwlIvIikhwjWdwhY[

  5. Y X O X/ Y/ gR`PauqyryK` KMfXOX EqyYOY ie@kdUjynMUibMdUOauqYk@tdyhn XOX nMUx-Dur`EqyYOY nMUy-Dur`ikh` j~d` hY| ibMdUO mUlibMdUikh` j~d` hY| Y-Dur` x-Dur`

  6. Y X/ O X Y/ y-Dury dy auprly p`sy sMiKE~v~ (+)dIE~ Eqy hyT~ v`ly p`sy (-) dIE~ huMdIE~ hn| x-Dury dy s@jy p`sy sMiKE~v~ (+)dIE~ Eqy K@by v`ly p`sy (-) dIE~ huMdIE~ hn|

  7. k`rtIjnsmql Y X O X/ Y/ x-Dur`Eqyy-Dur`ijssmqliv@chuMdyhnaussmqlnMUk`rtIjnsmql (cartesian plane) ikh` j~d` hY| k`rtIjn smql

  8. k`rtIjn smql dIE~ cOQ`eIE~ Y X O X/ Y/ dUsr` cOQ`eI pihl` cOQ`eI I II IV III qIsr` cOQ`eI cOQ` cOQ`eI

  9. Buj Eqy koit iksy ibMdU nMU E`lyK qy idK`aux leI do sMiKE`v~ dI lOV huMdI hY ijhn~ nMU inrdySEMk ikh` j`d~ hY| pihly inrdyS EMk nMU x j~ Buj kihMdy h~|dUsry inrdyS EMk nMU y j~ koit kihMdy h~| ijvyN ik ibMdU p leI x j~ Buj dI kImq a hY Eqy y j~ koit dI kImq b hY| ijvyN ik ibMdU Q leI x j~ Buj dI kImq -3 hY Eqy y j~ koit dI kImq 4 hY| P(a,b) P(-3,4)

  10. Y X O X/ Y/ c`rcOQ`eIE~ ivcinrdySEMk~ dyinS`n dUsry cOQ`eI iv@c x, - d` Eqy y, + d` hovyg` pihl` cOQ`eI iv@c x,+ d` Eqy y,+ d` hovyg` (-,+) II I (+,+) IV (+,-) (-,-) III qIsry cOQ`eI iv@c x,- d` Eqy y, - d` hovyg` cOQy cOQ`eI iv@c x,+ d` Eqy y, -d` hovyg`

  11. swr-AMS • ie`ksmqliv`cie`kvsqUdwsQwninrDwrxkrndyleIlMBryKwvWdIjrurqhuMdIhY, ijsiv`cie`klytvIAqydUjIKVvINhuMdIhY[ • smqlnUMkwrtIjnjWinrdySAMksmqlikhwjWdwhYAqyryKwvWnMUinrdySAMkDuryikhwjWdwhY[ • lytvIryKwnUMx –DurwAqyKVvIryKwnUMy –DuryikhwjWdwhY[ • inrdySAMksmqlnUMcwrBwgWiv`cvMifAwjWdwhY, ijnHWnUMcOQwieAWikhwjWdwhY[ • DuirAWdykwtvyNibMdUnMUmUlibMdUikhwjWdwhY[ • mUlibMdUdyinrdySAMk (0,0) huMdyhn[

  12. AiBAws

  13. hyTilKypRSnWdyau`qridau[ • gR`PauqyryK` KMf XOX Eqy YOY ie@kdUjynMUiksibMdUauqyk@tdyhn? • XOX nMUikhV` Dur` ikh` j~d` hY? • YOY nMUikhV`Dur` ikh` j~d` hY? • ibMdU O ikhV` ibMdUikh` j~d` hY? • y-DurydyikhVyyp`sysMiKE~v~ huMdIAWhn? • X Aqyy DurwdovyNijssmqlhuMdyhnaussmqlnUMkIkihMdyhn? • iksyibMdUnMUE`lyKqyidK`auxleI do sMiKE`v~ dIlOVhuMdIhYijhn~ nMUkIikh` j`d~ hY? • pihlyinrdySEMknMUikhV` BujkihMdy h~?

  14. au`qr • gR`PauqyryK` KMf XOX Eqy YOY ie@kdUjynMU 0 ibMdUauqYk@tdyhn? • XOX nMUXDur` ikh` j~d` hY[ • YOY nMU y-Dur` ikh` j~d` hY| • ibMdU O mUlibMdUikh` j~d` hY| • (+)dIE~ auprlyEqyhyT~ v`lyp`sy (-) dIE~ huMdIE~ hn| • X Aqyy DurwdovyNijssmqlhuMdyhnaussmqlkwrtIjnsmqlkihMdyhn? • iksyibMdUnMUE`lyKqyidK`auxleI do sMiKE`v~ dIlOVhuMdIhYijhn~ nMUinrdySEMkikh` j`d~ hY| • pihlyinrdySEMknMU x j~ BujkihMdy h~|

  15. KwlI QWvW Bro[ • ibMdU ___ nUM mUl ibMdU ikhw jWdw hY[ • gRwP au`qy ryKw KMf XOX Aqy YOY ie`k dUjy nMU ibMdU ___ au`qy k`tdy hn[ • pihly inrdyS AMk nUM kI kihMdy hn? • dUjy inrdyS AMk nUM kI kihMdy hn? • x-Durydy s@jy p`sy sMiKE~v~ ___dIE~ Eqy K@by v`ly p`sy ____ dIE~ huMdIE~ hn| • XOX nUM ____ DUrw ikhw jWdw hY? • YOY nUM ____ DUrw ikhw jWdw hY?

  16. au`qr • ibMdU0nUMmUlibMdUikhwjWdwhY[ • gRwPau`qyryKwKMfXOXAqyYOYie`kdUjynMUibMdU0au`qyk`tdyhn[ • pihlyinrdySAMknUMxjWBu`jkihMdyhn[ • dUjyinrdySAMknUMyjWkoitkihMdyhn? • x-Durydys@jyp`sysMiKE~v~ (+)dIE~ EqyK@byv`lyp`sy(-) dIE~ huMdIE~ hn| • XOX nUMX DUrwikhwjWdwhY? • YOY nUMYDUrwikhwjWdwhY?

  17. pRSn(a`qrleIpRSndyilMkqyjwa) Aud`hrn: gR`PpyprauqyibMdU (2,3) nMUiksqr~ ivK`ieE` j` skd` hy? Aud`hrn: gR`PpyprauqyibMdUE` (-3,3),(-2,-3)Eqy(3,-1)nMUivK`a? Aud`hrn: gR`PpyprauqyibMdUE` (-2,3),(0,1), (1,0)Eqy (2,-1)nMUiml` kyryK` bx`aux` |

  18. Y 4 3 2 1 X/ O X -3 -2 -1 1 2 3 4 -1 -2 -3 Y/ iksy ibMdU nMU gR`P pypr au@qy idK`aux` Aud`hrn: gR`P pypr auqy ibMdU (2,3) nMU iks qr~ ivK`ieE` j` skd` hy| (2,3) koit BUj

  19. Y Y 4 3 2 1 X/ O X -3 -2 -1 1 2 3 4 -1 -2 -3 Y/ Y/ Aud`hrn: gR`P pypr auqy ibMdUE` (-3,3),(-2,-3) Eqy (3,-1) nMU ivK`a? (-3,3) koit BUj (3,-1) (-2,-3)

  20. Y 4 3 2 1 X/ O X -3 -2 -1 1 2 3 4 -1 -2 -3 Y/ Aud`hrn: gR`P pypr auqy ibMdUE` (-2,3),(0,1), (1,0)Eqy (2,-1) nMU iml` ky ryK` bx`aux` | (-2,3) (0,1) (1,0) (2,-1)

  21. Bibleography • nOvIN jmwq dI gixq dI pwT-pusqk

  22. DMnvwd

More Related