1 / 8

Técnicas de conteo

Principio fundamental del conteo.

haruki
Download Presentation

Técnicas de conteo

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Principio fundamental del conteo. Si un evento puede realizarse de n1 maneras diferentes y si después de efectuarlas, un segundo evento puede realizarse de n2 maneras diferentes y si después de efectuarlas un tercer evento puede realizarse de n3 maneras diferentes y así sucesivamente, entonces el número de maneras en que los eventos pueden realizarse en orden indicado es el producto Técnicas de conteo n1 • n2 • n3

  2. Notación factorial: El producto de los enteros positivos desde 1 hasta n, se emplea con mucha frecuencia en matemáticas y lo denotamos por el símbolo n! (que se lee n factorial) n! = 1 ∙ 2 ∙ 3 ∙ … (n-2)(n-1)n Se define 0! = 1 1!= 1 Ejemplos: 2! = 1 ∙ 2 = 2 3! = 1 ∙ 2 ∙ 3 = 6 4! = 1 ∙ 2 ∙ 3 ∙ 4 = 24 5! = 1 ∙ 2 ∙ 3 ∙ 4 ∙ 5 = 120 6! = 1 ∙ 2 ∙ 3 ∙ 4 ∙ 5 ∙ 6 = 720 7! = 1 ∙ 2 ∙ 3 ∙ 4 ∙ 5 ∙ 6 ∙7 = 5 040 8! = 1 ∙ 2 ∙ 3 ∙ 4 ∙ 5 ∙ 6 ∙7 ∙ 8 = 40 320 9! = 1 ∙ 2 ∙ 3 ∙ 4 ∙ 5 ∙ 6 ∙7 ∙ 8 ∙ 9 = 362 880 10! = 1 ∙ 2 ∙ 3 ∙ 4 ∙ 5 ∙ 6 ∙7 ∙ 8 ∙ 9 ∙ 10 = 3 628 800

  3. Combinaciones y Permutaciones Normalmente usamos la palabra "combinación" descuidadamente, sin pensar en si el orden de las cosas es importante. "Mi ensalada de frutas es una combinación de manzanas, uvas y bananas": no importa en qué orden pusimos las frutas, podría ser "bananas, uvas y manzanas" o "uvas, manzanas y bananas", es la misma ensalada.

  4. "La combinación de la cerradura es 472": ahora sí importa el orden. "724" no funcionaría, ni "247". Tiene que ser exactamente 4-7-2. Si el orden no importa, es una combinación. Si el orden sí importa es una permutación. En permutaciones hay 2 tipos: Se permite repetir: como la cerradura de arriba, podría ser "333". Sin repetición: por ejemplo los tres primeros en una carrera. No puedes quedar primero y segundo a la vez.

  5. Permutaciones Una ordenación de un conjunto de n objetos en un orden dado se llama una permutación de los objetos (tomados todos a la vez). Ejemplo: Consideremos el conjunto de letras { a, b, c, d } a) abcd, bacd, cbad, dcba son permutaciones de las 4 letras tomadas todas a la vez b) abc, bac, cab, cbd son permutaciones de las 4 letras tomadas 3 a la vez c) ab, ba, bc, bd son permutaciones de las 4 letras tomadas 2 a la vez

  6. El número de permutaciones de n objetos tomados r a la vez se denota por: P(n,r) Antes de deducir la formula general, consideremos un caso especial. Ejemplo: Hallar el número de permutaciones de 6 objetos a, b, c, d, e, f tomados 3 a la vez En otras palabras , hallar el número de palabras de tres letras diferentes que pueden formarse con 6 letras.

  7. Representamos las palabras de 3 letras por tres cajas 6 La primera letra puede escogerse de 6 formas diferentes, la segunda letra se puede escoger de 5 formas diferentes, la tercera letra se puede escoger de 4 formas diferentes 5 4 6 Por el principio fundamental del conteo hay 6∙5∙4 = 120 posibles palabras de tres letras sin repetición , o hay 120 permutaciones de 6 objetos tomados 3 a la vez al mismo tiempo, esto es:

  8. En el caso de r = n tenemos P(n,n) = n(n-1)(n-2) … 3∙2∙1 = n!

More Related