1 / 20

Hypolipidemic Drugs

Hypolipidemic Drugs. HYPERLIPIDEMIA. Plasma lipids are transported in complexes called lipoproteins . Metabolic disorders that involve elevations in any lipoprotein species are termed hyperlipoproteinemias or hyperlipidemias. Hyperlipemia: indicates increased levels of triglycerides.

harva
Download Presentation

Hypolipidemic Drugs

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Hypolipidemic Drugs

  2. HYPERLIPIDEMIA • Plasma lipids are transported in complexes called lipoproteins. • Metabolic disorders that involve elevations in any lipoprotein species are termed hyperlipoproteinemias or hyperlipidemias. • Hyperlipemia: indicatesincreased levels of triglycerides.

  3. HYPERLIPIDEMIA • The two major clinical sequelae of hyperlipidemias • Atherosclerosis: Atherosclerosis is the leading cause of death for both genders in the USA and other Western countries. • Acute pancreatitis: Occurs in patients with marked hyperlipemia. Control of triglycerides can prevent recurrent attacks of this life-threatening disease.

  4. Atherosclerosis • Lipoproteins that contain apolipoprotein (apo) B-100 carry lipids into the artery wall. These are • low-density lipoproteins (LDL), • intermediate-density lipoproteins (IDL), • very-low-density lipoproteins (VLDL), and • lipoprotein(a) (Lp[a]). • Cellular components in atherosclerotic plaques include foam cells, which are transformed macrophages and smooth muscle cells filled with cholesteryl esters. • These cellular alterations result from endocytosis of modified lipoproteins via at least four species of scavenger receptors. • Chemical modification of lipoproteins by free radicals creates ligands for these receptors. • The atheroma growth: • the accumulation of foam cells, collagen, fibrin, and frequently calcium. • slowly occlude coronary vessels, • rupture of unstable atheromatous plaques, • activation of platelets and formation of occlusive thrombi. • The leading cause of death.!!

  5. Atherosclerosis • High-density lipoproteins (HDL) exert several anti atherogenic effects. • They participate in removing of cholesterol from the artery wall and inhibit the oxidation of atherogenic lipoproteins. • Low levels of HDL (hypoalphalipoproteinemia) are an independent risk factor for atherosclerotic disease. • Cigarette smoking is a major risk factor for coronary disease. It is associated with; • reduced levels of HDL, • inhibiting of cholesterol removal from the artery wall, • cytotoxic effects on the endothelium, • increased oxidation of lipoproteins, and • stimulation of thrombogenesis. • Diabetes, also a major risk factor, is another source of oxidative stress.

  6. Atherosclerosis • Normal coronary arteries can dilate in response to ischemia, increasing delivery of oxygen to the myocardium. • This process is mediated by nitric oxide, acting upon smooth muscle cells of the arterial media. • This function is impaired by atherogenic lipoproteins, thus aggravating ischemia. • Reducing levels of atherogenic lipoproteins and inhibiting their oxidation restores endothelial function. • Because atherogenesis is multifactorial, therapy should be directed toward all modifiable risk factors. • Atherogenesis is a dynamic process. • Quantitative angiographic trials have demonstrated net regression of plaques during aggressive lipid-lowering therapy. • Clinical trials have shown significant reduction in mortality from new coronary events and in all-cause mortality.

  7. Schematic Illustration of a Lipoprotein Particle Lipoproteins have hydrophobic core regions containing cholesteryl esters and triglycerides surrounded by unesterified cholesterol, phospholipids, and apoproteins. Certain lipoproteins contain very high-molecular-weight apoproteins (B type) that exist in two forms: B-48, formed in the intestine and found in chylomicrons and their remnants; and B-100, synthesized in liver and found in VLDL, VLDL remnants (IDL), LDL (formed from VLDL), and Lp(a) lipoproteins. TG: Trigiglycerides CE: Cholesteryl esthers

  8. apo C

  9. THE PRIMARY HYPERTRIGLYCERIDEMIASHypertriglyceridemia is associated with increased risk of coronary disease. • VLDL and IDL have been found in atherosclerotic plaques. • These patients tend to have cholesterol-rich VLDL of small particle diameter. • Hypertriglyceridemic patients with coronary disease or risk equivalents should be treated aggressively. • Patients with triglycerides above 700 mg/dL should be treated to prevent acute pancreatitis because the LPL clearance mechanism is saturated at about this level.

  10. Primary Chylomicronemia • Chylomicrons are not present in the serum of normal individuals who have fasted 10 hours. • The recessive traits of deficiency of lipoprotein lipase or its cofactor are usually associated with severe lipemia (2000-2500 mg/dL of triglycerides when the patient is consuming a typical American diet). • These disorders might not be diagnosed until an attack of acute pancreatitis occurs. • Patients may have eruptive xanthomas, hepatosplenomegaly, hypersplenism, and lipid-laden foam cells in bone marrow, liver, and spleen. • Marked restriction of total dietary fat is the basis of effective long-term treatment. • Niacin or a fibrate may be of some benefit if VLDL levels are increased.

  11. DRUGS USED IN HYPERLIPIDEMIA • HMG-CoA reductase inhibitors • Lovastatin, atorvastatin, fluvastatin, pravastatin, simvastatin, rosuvastatin • Niacin • Fibric Acid Derivatives • Gemfibrozil,fenofibrate, clofibrate • Bile acid-binding Resins • Colestipol, cholestyramine,colesevelam • Inhibitors of Intestinal sterol absorption • Ezetimibe

  12. HMG-CoA reductase inhibitors(3-Hydroxy-3-methylglutaryl-coenzyme A ) • These compounds are structural analogs of HMG-CoA. • They are most effective in reducing LDL. • Other effects include decreased oxidative stress and vascular inflammation with increased stability of atherosclerotic lesions. • It has become standard practice to initiate reductase inhibitor therapy immediately after acute coronary syndromes, irrespective of lipid levels.

  13. HMG-CoA reductase inhibitors(3-Hydroxy-3-methylglutaryl-coenzyme A ) • Reductase inhibitors are useful alone or with resins, niacin, or ezetimibe in reducing levels of LDL. • Women who are pregnant, lactating, or likely to become pregnant should not be given these agents. • Use in children is restricted to those with special indications (homozygous familial hypercholesterolemia, heterozygous familial hypercholesterolemia). • Elevations of serum aminotransferase activity (up to three times normal) occur in some patients. Sign of hepatotoxicity.

  14. Inhibitors of Intestinal sterol absorption • Ezetimibe is the first member of a group of drugs that inhibit intestinal absorption of phytosterols and cholesterol. • Its primary clinical effect is reduction of LDL levels. • Ezetimibe is a selective inhibitor of intestinal absorption of cholesterol and phytosterols. • A transport protein, NPC1L1, appears to be the target of the drug. • It is effective even in the absence of dietary cholesterol because it inhibits reabsorption of cholesterol excreted in the bile. • Average reduction in LDL cholesterol with ezetimibe alone in patients with primary hypercholesterolemia is about 18%, with minimal increases in HDL cholesterol. • Ezetimibe is synergistic with reductase inhibitors, producing decreases as great as 25% in LDL cholesterol.

  15. Acronyms • Apo Apolipoprotein • CETP Cholesteryl ester transfer protein • CK Creatine kinase • HDL High-density lipoproteins • HMG-CoA 3-Hydroxy-3-methylglutaryl-coenzyme A • IDL Intermediate-density lipoproteins • LCAT Lecithin:cholesterol acyltransferase • LDL Low-density lipoproteins • Lp(a) Lipoprotein(a) • LPL Lipoprotein lipase • PPAR-a Peroxisome proliferator-activated receptor-alpha • VLDL Very-low-density lipoproteins

More Related