90 likes | 178 Views
Utilizing the elemental propertie values, the Overall Heat Transfer Coefficient. [Reference] Forced Convection of water http://www.engineeringtoolbox.com/convective-heat-transfer-d_430.html Thermal Conductivity http://www.engineeringtoolbox.com/thermal-conductivity-liquids-d_1260.html.
E N D
Utilizing the elemental propertie values, the Overall Heat Transfer Coefficient. [Reference] Forced Convection of water http://www.engineeringtoolbox.com/convective-heat-transfer-d_430.html Thermal Conductivity http://www.engineeringtoolbox.com/thermal-conductivity-liquids-d_1260.html
Table 5 illustrates the Heat Generated from the electrodes • Applied an average of peak and steady state current use • Ultimately calculate the • temperature difference from Solution to coolant, to see how effective the water bath system is at cooling.
Initial Temperature of solution was 65 Deg C • Temperature was calculated with the Heat Transfer Equation (Previous Slide) • Table 6 • Heat Generated from the electrodes • average peak current; • calculated the T of the coolant • Table 7 • Heat Generated from the electrodes • Average steady state current • Calculated the T of the coolant
Table 8 illustrates the time required for the chiller to change the coolant temperature by 1 degree. • Table 9 illustrates the time required for the chiller to translate from the peak heat generated to the steady state heat generated. • These results provide vital information on what needs to be done with labview.