1 / 56

Standard Model @ Hadron Colliders X. Top Quark: production ( cont .)

Standard Model @ Hadron Colliders X. Top Quark: production ( cont .). A semileptonic tt event. Is the top quark a normal fermion ?. Weak t coupling (V-A) CKM – elements Electric charge Top mass. gtt couplings spin correlations tt - resonances. Production of top quarks.

hayden
Download Presentation

Standard Model @ Hadron Colliders X. Top Quark: production ( cont .)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Standard Model @ HadronCollidersX. Top Quark: production (cont.) Peter Mättig, Scottish Summer School

  2. A semileptonicttevent Peter Mättig, Scottish Summer School 2012

  3. Isthetopquark a normal fermion? Weak t coupling (V-A) CKM – elements Electric charge Top mass gttcouplings spincorrelations tt - resonances Peter Mättig, Scottish Summer School 2012

  4. Production of topquarks What x requiredfortopproduction? 0.18 at Tevatron 0.05 at LHC (0.025 @ 14 TeV) Dominant at LHC forlowMtt Suppressed @ Tevatron Relevant at LHC for high Mtt Dominant @ Tevatron Peter Mättig, Scottish Summer School 2012

  5. How to measurett cross section (Whyshouldwe?): Sensitive to gluon –ttcouplings Test of QCD with massive quarks • Selectevents: • 4 jetswithpT> 25 GeV • isolatedelectron,muon pT>20 GeV • missingtransverseenergy > 20 GeV Luminosity: Howmanyproton-collisions? Whatfraction of tteventsareretainedafterselection Peter Mättig, Scottish Summer School 2012

  6. Cross sectiondetermination Experimental precisiondepends on how well - background, efficiency, luminositycanbecontrolled Key issuedetermineefficiency Log s • Largestuncertainties: • Jet energyscale • bottomidentification • Background yield • Jets from QCD • selectionefficiency • e, m, ..... ObservedpT wrongenergyscale SelectedpTrange TruejetpT Jet pt Experimental uncertainty ~ 9% Luminosityuncertainty ~ 4.4 % Peter Mättig, Scottish Summer School 2012

  7. Background estimatation • Dominant background: W + 4 jets same final objects • assume QCD generators to becorrect, i.etemplates • datadrivenmethod (ATLAS): • tt – events: samenumber of W+, W- • W+jetsmethod: more W+than W- rMC = NW+/NW- • Furtherstep: estimate W+b(b)+2 jetsfractionbased on • bottomtagging in W+2jets  extrapolated to 4 jets via MC • Otherbackground: QCD withbleptonwith high xFeynman • Estimatefrom ‚non – isolated‘ leptons Peter Mättig, Scottish Summer School 2012

  8. Background in semileptonictt Contribution to sample no b – tag S/B ~ 1/3 W+Jets/tt ~ 1.4 Contribution to samplewith b – tag S/B ~ 4 W+Jets/tt ~ 0.15 price: somewhatreducedstatistics Wb+jetsmoreuncertain Peter Mättig, Scottish Summer School 2012

  9. Dileptons + fullyhadronic Dileptonic: Very pure tt – sample Note: forX-section no need to useanyotherproperty ... Butloss in statistics Fullyhadronic: Huge QCD background Advantage: M(t), M(W)  Kinematic fit Peter Mättig, Scottish Summer School 2012

  10. Summary of Xsection Dileptonic and semi-leptonicmeasurementssimilarprecision All hadronic larger errors Experiments havesmalleruncertaintythantheoreticalcalculation Peter Mättig, Scottish Summer School 2012

  11. Cross sectionmeasurement Theoreticaluncertainty 7-10% partly NNLO Theory & experiment uncertaintyabout equal Very good agreementbetweendata and expectation Peter Mättig, Scottish Summer School 2012

  12. Tevatronfwd-bkwasymmetry ‚Forward‘ hemisphere ‚Backward‘ hemisphere • Count • topquarks in forwardhemiNfwd • topquarks in backwardhemiNbwd Peter Mättig, Scottish Summer School

  13. Standard Model: smallasymmetry • Dominant production @ Tevatron • chargedirection ‚lost‘ • LO: no asymmetry in Standard Model C= -1 C = +1 NLO: Interference small AC Standard Model: (4.8+-0.5)% Peter Mättig, Scottish Summer School

  14. Tevatron: larger asymmetry Moreeventswith qtop· ytop > 0 Low mass: consistentwith Standard Model Masses > 450 GeV 3 – 4 sdeviationfromexpectation Peter Mättig, Scottish Summer School

  15. AFBvsmtt +2.5 ± 3.1 19.8 ± 4.3 Note:Theseareearlier CDF results!! Low mass: consistentwith Standard Model Masses > 450 GeV 3 – 4 sdeviationfromexpectation (CDF) Peter Mättig, Scottish Summer School

  16. A glimpse of multi – TeVphysics? BSM interpretation: asymmetrydue to interference high massparticle + Standard Model Type 1: Gluonwith axial coupling Type 2: t –channel Colour neutral vector with FCNC Type 3: t –channel colouredscalar with FCNC Such massive particlesshouldbecomevisible @ LHC Peter Mättig, Scottish Summer School

  17. tt – asymmetries @ LHC Differences: pp – collider, Tevatron LHC symmetricinitialstateqqtt to ggtt Tevatron LHC 8 TeV Enhanceqqproductionby large Dy high x valencequark on low x seaanti-quark Peter Mättig, Scottish Summer School

  18. tt – asymmetries @ LHC Peter Mättig, Scottish Summer School

  19. Interpretation in models For concretemodel: compareTevatron & LHC varymass and couplings of newparticles Mtt > 450 GeV Many of the ‚Tevatron‘ allowedmodelsdisfavouredby ATLAS (and CMS) Peter Mättig, Scottish Summer School

  20. Jets in topevents QCD effectsimply a potential strongbias to studies Jet multiplicities: Deficiencies at higherNjets Productionproperties: pT and y of tt – system Good descriptionby QCD calculations Peter Mättig, Scottish Summer School

  21. Massspectrum of tt - events pT of topquarks & mass of tt – pairspredictedby QCD ‚Resolved‘ fourjet (+ lepton, n) Standard topselection High massregion: Boostedtops mergedjets Appropriatealgorithmsrequired Peter Mättig, Scottish Summer School

  22. Productionproperties: e.g. Mtt ‚Fatjet‘ Closerlookshowssubstructure Peter Mättig, Scottish Summer School

  23. Fatjet & substructure Highlyboostedtops: closebyjets ‚Fatjet‘ of R = 1.0 • Require: Mfatjet> 100 GeV • Nextstep: lookforsubstructure • use kTjetfinder to ‚uncluster‘ • dij > (40 GeV)2 • Requireoppositejet/leptonsystem Non-boostedboosted Possibleimprovements: trimming of jets: RejectanysubjetwithsomepT,i/pT,jet < fcut Peter Mättig, Scottish Summer School

  24. Models predictresonancesXtt Peter Mättig, Scottish Summer School

  25. Models predictresonancesXtt Highermasses: longtailsdue to gg/qqluminosity Example: 5 dimtheories, Randall – Sundrum etc. predict Kaluza – Klein gluons No significantresonance  MKK > 1.5 TeV Peter Mättig, Scottish Summer School

  26. tt + Z/W events Measurement of Ztt & Wttcoupling Possibleresonancesearchorheavyquark Importantbackgroundfor SUSY searches Searchfor (Zll)+l+b(b),  ttZ equalchargelepton pair + b(b)  ttW/Z Expectedlow X- section, fair agreementwithexpectation Peter Mättig, Scottish Summer School

  27. Isthetopquark a normal fermion? Weak t coupling (V-A) CKM – elements Electric charge Top mass Peter Mättig, Scottish Summer School

  28. Mass of thetopquark A fundamental parameter of the Standard Model A broadspectrum of decays and methods Note: first time a quarkmasscanbe measureddirectly (Lighterquarks to beinferredindirectlyfromhadronmasses) Peter Mättig, Scottish Summer School

  29. Top massfroml+jetdecays Favouredtopology: tt 4 Jets (2 b –jets) + e/m + n • Theproblems: • How to getthe z – component of n • Out of 4 (ormore) jets: whichjetbelongs to whichtop? • Whatistheenergyscale of jets (and electrons) Peter Mättig, Scottish Summer School

  30. Problem 1: pz(n) Constraintfrom W - mass Note: n – masscompletelynegligible Quadraticequation 2 solutions physics: in 70% thesolutionwithsmallerpzcorrect Peter Mättig, Scottish Summer School

  31. Problem 2: whichjets? • Twofacettes: • ifmorethan 4 jets (initialstate rad.) • mostlyjetswithhighestpT • ifexactly 4 jets: whichbelongs to • whichtopquark? • 4 jets 4 possibleassigments • (jAjBJC/jD, jAjBjD/jC, ....) • Note: if b – jetsidentified, reduced to 2 possibilities • Importantconstraints • mass (jjj) = mass(jln) (= Mt) • mass (jj) = MW Peter Mättig, Scottish Summer School

  32. Problem 3: jetenergyscale Measuresignals in calorimeter derivejetenergy Impliesuncertainty!  relatesdirectly to topmass Top – quarksoffer ‚selfcalibration‘ M(jj) has to beequal MW  change JES such thatfulfilled Still the (slightly) dominant uncertainty of Mt Peter Mättig, Scottish Summer School

  33. Most precise: matrixmethod Theoreticalpredwith M1(top) w1 • probabilitydensityfor M1 • use 24 integration variables Theoreticalpredwith M1(top) w2 Nextstep: convolute with exptl. effects • Assignweight • to eachevent Example: energyresolution Peter Mättig, Scottish Summer School

  34. Likelihoodfrom different masses wAwBwCwD Sumover all events and find combineweights ...... Find M(top) withmaximumweight Peter Mättig, Scottish Summer School

  35. Top massfromdileptons & hadronic • Dileptons: • No directmasspeakvisible • useenergies of electrons (& bottomjets) • using MET adjustneutrinoenergies to • yieldsame MW and Mtop • All hadrons: • Fight hugebackground • suppressbyneuralnetwork Peter Mättig, Scottish Summer School

  36. Measurements of Mtop A lot of measurements, a lot of methods all decaychannelsbynowbetterthan 2 GeV! Combination 173.2±0.6±0.8 GeV Peter Mättig, Scottish Summer School

  37. How to interpretresult? For Standard Model fit  ‚pole mass‘ required Instead: all methodsbased on simulation of QCD effects of mass ‚topquarknottotallyfree‘: colourflow - howdoesthisaffectmassdetermination? Different modelsmassdifferences of a fewGeV e.g. colourreconnection Skands&Wicke Peter Mättig, Scottish Summer School

  38. Top massfrom cross section • Massmeasurementsbased • on MC simulation •  not well defined • QCD corrections • Difficult to interpret in • Electroweakfits • pole massfrom NNLO • calculations on Xsection Peter Mättig, Scottish Summer School

  39. Currentresults Theoreticallybettermotivated Buterrors of ~ 5 -8 GeV mostlydue to theoryuncertainty note: MS – massaround 160 GeV! Peter Mättig, Scottish Summer School

  40. Speculationsaboutthetopmass Top mass and the 1018GeVscale • Naturalnessproblem: • RenormalisingtheHiggsmass • Contributions to DmH • ‚most relevant‘ • compensatetop • Higgs potential: • l(mH) = 0.125 (+uncertainties) • l(Q2) • Ifl < 0  universeunstable Nice to speculate ..... Butcanwereallyextrapolatesafelyover 14 orders of magnitude? Peter Mättig, Scottish Summer School

  41. t - quark Helicity structure of topdecay Isthetop a normal weaklydecayingparticle? Note: first time helicitystructure of quarkcanbedetermined b b W+ W+ allowed forbidden W – polarisationagainstdirection of t – quarkmomentum Longitudinal polarosation also possible Polarisation reflected in decay angle of fermions Peter Mättig, Scottish Summer School

  42. Helicity structure of topdecay Ratherstraightforwardfor e, m For W  qqidentify q vs. q Challenging! angle related to leptonenergy, Mbl, ..... Peter Mättig, Scottish Summer School

  43. Measurements Agreement with NNLO expectation: ‚no‘ right handedW‘s, mostW‘sare longitudinal Peter Mättig, Scottish Summer School

  44. Limits on additional couplings Several BSM models deviations General approachEffectiveLagrangian: Parametrisationintohigherdimensionoperators gL, gR: left/righthandedcoupling of dim-6 operator Peter Mättig, Scottish Summer School

  45. Top spincorrelations @ LHC ‚Bare‘ quark directinformation on spinconfiguration Spin correlationsoffer test of production of tt – pairs Potentiallyimportanttool to identifynewparticles Close to threshold: High ttmasses: S = 0 state, gluonhelicitieslikegg tt: helicityconservation Top spinsaligned Top spinsopposite Useleptons to identifyspindirections and correlations Dileptondecayneeded restsystemcannotbedetermined Peter Mättig, Scottish Summer School

  46. Experimental method Definequantisationaxis, e.g. beam a*Signaltemplates + b* backgroundtemplate = DATA Peter Mättig, Scottish Summer School

  47. Spin correlations @ Tevatron Note: Tevatrontops via qq – scattering! f = 0.85 ± 0.29 Tevatron no or marginal evidenceforspincorrelations Peter Mättig, Scottish Summer School

  48. Spin correlations @ LHC MeasureDf of leptons in transverse plane Note experimental distortion: Alignmentmeans on leptonlowenergetic alignedopposite Peter Mättig, Scottish Summer School

  49. Comparisonwith SM expectation First significantevidence of spincorrelations Agreement with Standard Model Study of spincorrelations: A method to separate newresonancesfrom QCD continuum (?) Peter Mättig, Scottish Summer School

  50. Single topproduction toppairsdue to strongcoupling, weakcoupling singletopquarks Dominant s(7 TeV) = 65 pb (half of tt – Xsection) Remember: W±couples to fermiondoublets Peter Mättig, Scottish Summer School

More Related