210 likes | 225 Views
Learn about abstract syntax and its role in semantic analysis during parsing. Understand the need for abstract syntax and how it helps in constructing the syntax tree. Explore examples and techniques for semantic analysis during both recursive descent and bottom-up parsing.
E N D
Abstract Syntax Mooly Sagiv html://www.cs.tau.ac.il/~msagiv/courses/wcc03.html
Outline • The general idea • Bison • Motivating example Interpreter for arithmetic expressions • The need for abstract syntax • Abstract syntax for arithmetic expressions
Semantic Analysis during Recursive Descent Parsing • Scanner returns “semantic values” for some tokens • The function of every non-terminal returns the “corresponding subtree value” • When AB C Dis appliedthe function for A can use the values returned by B, C, and D • The function can also pass parameters, e.g., to D(),reflecting left contexts
int E() { swith(tok) { case num : temp=tok.val; eat(num); returnEP(temp); default: error(…); }} E num E’ E’ E’+ num E’ int EP(int left) { swith(tok) { case $: return left; case + : eat(+); temp=tok.val; eat(num); returnEP(left + temp); default: error(…) ;}}
Semantic Analysis during Bottom-Up Parsing • Scanner returns “semantic values” for some tokens • Use parser stack to store the “corresponding subtree values” • When A B C Dis reducedthe function for A can use the values returned by B, C, and D • No action in the middle of the rule
Example num 5 E E + num E num + E 7 E 12
Bison Specification Declarations %% Productions %% C -Routines
Interpreter (in Bison) %{ declarations of yylex() and yyeror() %} %union { int num; string id;} %token <id> ID %token <num> NUM %type <num> e f t %start e %% e : e ‘+’ t {$$ = $1 + $3 ; } | e ‘-’ t { $$ = $1 - $3 ; } | t { $$ = $1; } ; t : t ‘*’ f { $$ = $1 * $3; } | t ‘/’ f { $$= $1 / $3; } | f { $$ = $1; } ; f : NUM { $$ = $1; } | ID { $$ = lookup($1); } | ‘-’ e { $$ = - $2; } | ‘(‘ e ‘)’ { $$ = $2; } ;
%{ declarations of yylex() and yyeror() %} %union { int num; string id;} %token <id> ID %token <num> NUM %type <num> e %start e %left PLUS MINUS %left MUL DIV %right UMINUS %% Interpreter (compact spec.) e : e PLUS e {$$ = $1 + $3 ; } | e MINUS e { $$ = $1 - $3 ; } | e MUL e { $$ = $1 * $3; } | e DIV e { $$= $1 / $3; } | NUM | ID { $$ = lookup($1); } | MINUS e % prec UMINUS { $$ = - $2; } | ‘(‘ e ‘)’ { $$ = $2; } ;
stack input action $ 7+11+17$ shift num 7 $ +11+17$ reduce e num e 7 $ +11+17$ shift + e 7 $ 11+17$ shift num 11 + e 7 $ +17$ reduce enum
stack input action e 18 $ +17$ shift + e 18 $ 17$ shift num 17 + e 18 $ $ reduce enum e 11 + e 7 $ +17$ reduce e e+e
stack input action $ accept e 35 $ e 17 + e 18 $ $ reduce e::= e+e
So why can’t we write all the compiler code in Bison/CUP?
Historical Perspective • Originally parsers were written w/o tools • yacc, bison, ... make tools acceptable • But it is still difficult to write compilers in parser actions (top-down and bottom-up) • Natural grammars are ambiguous • No modularity principle • Many useful programming language features prevent code generation while parsing • Use before declaration • gotos
Abstract Syntax • Intermediate program representation • Defines a tree - Preserves program hierarchy • Generated by the parser • Declared using an (ambiguous) context free grammar (relatively flat) • Not meant for parsing • Keywords and punctuation symbols are not stored (Not relevant once the tree exists) • Big programs can be also handled (possibly via virtual memory)
Issues • Concrete vs. Abstract syntax tree • Need to store concrete source position • Abstract syntax can be defined by: • Ambiguous context free grammar • C recursive data type • “Constructor” functions • Debugging routines linearize the tree
Exp id Unop - (UnMin) (IdExp) Exp num (NumExp) Exp Exp Binop Exp Exp Unop Exp (UnOpExp) (BinOpExp) Binop + (Plus) Binop - (Minus) Binop * (Times) Binop / (Div) Abstract Syntax for Arithmetic Expressions
/* absyn.h */ typedef enum {A_Plus, A_Minus, A_Times, A_Div} Binop; typedef enum {A_UnMin} Unop; typedef enum {A_IdExp, A_NumExp, A_BinOpExp, A_UnopExp} ExpKind; typedef struct exp { ExpKind kind ; union { struct {string repr ;} IdExp; struct {int number ; } NumExp; struct {Binop op; struct exp *left; struct exp *right;} BinExp; struct {Unop op; struct exp *arg;} UnExp; } exp; } *Exp; extern Exp idExp(string repr); extern Exp numExp(int number); extern Exp binOp(Binop, struct exp *, struct exp*); extern Exp unOp(Unop, struct exp*);
e : e ‘+’ t {$$ = binop(A_Plus, $1, $3) ; } | e ‘-’ t { $$ = binop(A_Minus, $1, $3) ; } | t { $$ = $1; } ; t : t ‘*’ f { $$ = binop(A_Times,$1, $3); } | t ‘/’ f { $$= binop(A_Div, $1, $3); } | f { $$ = $1; } ; f : NUM { $$ = numExp($1); } | ID { $$ = idExp($1); } | ‘-’ e { $$ = unOp(A_UnMinus, $2); } | ‘(‘ e ‘)’ { $$ = $2; } ; %{ declarations of yylex() and yyeror() #include “absyn.h” %} %union { int num; string id; Exp exp;} %token <id> ID %token <num> NUM %type <exp> e f t %start e %%
%{ declarations of yylex() and yyeror() #include “absyn.h” %} %union { int num; string id; Exp exp; } %token <id> ID %token <num> NUM %type <exp> e %start e %left PLUS MINUS %left MUL DIV %right UMINUS %% e : e PLUS e {$$ = binop(A_Plus, $1, $3) ; } | e MINUS e { $$ = binop(A_Minus, $1, $3) ; } | e MUL e { $$ = binop(A_Times, $1, $3); } | e DIV e { $$= binop(A_Div, $1, $3); } | NUM {$$ = numExp($1); } | ID { $$ = idExp($1); } | MINUS e % prec UMINUS { $$ = unOp(A_UnMin,$2); } | ‘(‘ e ‘)’ { $$ = $2; } ;
Summary • Flex and Bison simplify the task of writing compiler/interpreter front-ends • Abstract syntax provides a clear interface with other compiler phases • Supports general programming languages • But the design of an abstract syntax for a given PL may take some time