240 likes | 587 Views
Corrente continua 1 6 giugno 2011. Corrente elettrica Densità di corrente Legge di Ohm, resistenza Resistività, conduttività Mobilità dei portatori Composizione di resistenze Energia e potenza nei circuiti elettrici. Corrente elettrica.
E N D
Corrente continua 16 giugno 2011 Corrente elettrica Densità di corrente Legge di Ohm, resistenza Resistività, conduttività Mobilità dei portatori Composizione di resistenze Energia e potenza nei circuiti elettrici
Corrente elettrica • Per definizione è il rapporto tra la carica passata attraverso una superficie e il tempo impiegato • Corrente media e corrente istantanea • Inizialmente ci occuperemo principalmente di correnti stazionarie, cioe` costanti nel tempo • Esempi di corrente: • corrente in un filo conduttore • Corrente di un fascio di particelle • Corrente ionica in un liquido
Il Tevatron di Fermilab • The Tevatron is currently colliding 36 proton against 36 antiproton bunches, where either beam consists of 3 equally spaced trains of 12 bunches in a common single vacuum chamber • The two beams are separated by a helical orbit except at the two locations of High Energy Physics (HEP) experiments, where they collide head on • Recently, the total beam intensities injected into the Tevatron has been slightly over 10×1012 protons and 1.2×1012 antiprotons
Corrente elettrica • Alla corrente possono contribuire sia cariche positive che negative • I contributi si sommano se le velocità sono opposte • Il verso convenzionale della corrente è quello della velocità delle cariche positive
Dimensioni fisiche. Unità di misura • Le dimensioni della corrente sono carica diviso tempo • L’unità di misura è l’ampere (A) definito come coulomb diviso secondo • Nel SI puro è il coulomb ad essere definito in termini di ampere
Corrente nei metalli • In un oggetto metallico, alcuni degli elettroni più esterni degli atomi costituenti vengono condivisi da tutto l’oggetto • Sono quindi liberi di muoversi entro l’oggetto, ma vincolati a non lasciarlo da forze alla superficie • Posseggono un moto di agitazione termica che è del tutto casuale, ovvero la velocità per diversi elettroni o in diversi istanti assume le diverse orientazioni possibili in modo casuale • La velocità termica ha, in modulo, un valore molto elevato
Corrente nei metalli • L’applicazione di un campo E produce una forza su tutti gli elettroni liberi, che di conseguenza si muovono con una velocità di deriva • La velocità di deriva di tutti gli elettroni ha la medesima direzione (opposta a E) • La velocità di deriva ha valore piuttosto piccolo
A Corrente e densità dei portatori • Consideriamo un filo metallico sede di corrente stazionaria, di sezione (retta) costante A • sia n la densità di portatori • e vd la velocità di deriva • Il numero di portatori N che passa attraverso A nel tempo è pari al numero di portatori presenti nel volume del cilindro di base A e altezza • La corrente è dunque
Corrente e densità dei portatori • Se la sezione non è retta, il volume è • Dove a è l’angolo formato dai vettori area A e velocità vd cioè: • La corrente si può allora scrivere: • Il numero di portatori puo` anche non essere distribuito uniformemente, allora • Ove n e` la densita` numerica dei portatori e r quella di carica
Corrente e densità di corrente • La corrente si può scrivere anche • Ove è stato introdotto il vettore densità di corrente • La corrente si può interpretare come il flusso del vettore densità di corrente attraverso la sezione A
Corrente e densità di corrente • Se il flusso di carica non è uniforme sulla sezione del conduttore, possiamo generalizzare la definizione di corrente come integrale del flusso della densità di corrente sull’elemento di area della sezione • Generalizzazione della densita` di corrente a più specie di portatori
Corrente attraverso superfici chiuse • Relazione tra densità di carica e di corrente • Conservazione della carica • Applicando il teorema della divergenza al primo membro
Equazione di continuità • Dall’uguaglianza degli integrali, segue • Se non c’è dipendenza dal tempo, si ha uno stato stazionario:
Densità di corrente • Per un filo di sezione uniforme, il modulo è il rapporto tra intensità di corrente e sezione retta del filo • Dimensioni • Unità di misura
Confronto tra velocità termica e di deriva • Velocità termica a 300 K • Velocità di deriva in un filo di Cu di sezione A=1mm2 per una corrente di 1A
Metalli - Legge di Ohm I A B • Lega la differenza di potenziale con l’intensità di corrente in un conduttore metallico • Le due grandezze V e I risultano proporzionali • R: resistenza • K: conduttanza • Dimensioni fisiche della resistenza • Unità di misura è l’ohm (W)
Resistività • La resistenza dipende dalle dimensioni geometriche • lunghezza l, sezione A • e dalla natura del conduttore • resistività r • Resistività • Dimensioni • Unità di misura • Conduttività: è l’inverso della resistività • La resistività dipende dalla temperatura
Campo E in un filo • Campo E in un filo conduttore a sezione costante • Cioè V è proporzionale alla lunghezza, ne segue che il campo è uniforme V0-V(x) x Legge di Ohm microscopica, ha validita` generale
Relazione tra vd e E • Risolvendo per i • e dall’espressione della corrente in funzione della velocità di deriva dei portatori • Segue che tale velocità è proporzionale al campo • Il moto non è uniformemente accelerato, come accade per una carica libera in un campo E • m: mobilità
Mobilità dei portatori • Dimensioni • Unità
Composizione di resistenze • Composizione in serie. 1 e 2 sono entrambe percorse dalla stessa corrente I, ai capi di 1 c’è una caduta di potenziale V1 e ai capi di 2 una caduta V2 • Vogliamo trovare una resistenza equivalente all’insieme delle due, nel senso che quando è percorsa dalla stessa corrente I, troviamo ai suoi capi la caduta di potenziale V1+V2 • Cioè la resistenza equivalente è la somma delle resistenze
Composizione di resistenze • Composizione in parallelo. 1 e 2 hanno una ugual caduta di potenziale V ai loro capi e sono percorse dalle correnti I1 e I2 risp. • Vogliamo trovare una resistenza equivalente all’insieme delle due, nel senso che quando ai suoi capi c’è la stessa caduta di potenziale V essa è percorsa dalla corrente I1+I2 • Cioè l’inverso della resistenza equivalente è la somma degli inversi delle resistenze 1 e 2
Energia nei circuiti elettrici • Consideriamo due punti 1 e 2 su di un filo conduttore a potenziale V1 e V2 risp. • Una carica Q passa da 1 a 2, l’energia potenziale varia di • Per la conservazione dell’energia, l’energia cinetica degli elettroni dovrebbe aumentare • In realta` abbiamo visto che la velocità dei portatori non cambia, c’è una perdita netta di energia dei portatori • L’energia cinetica è infatti ceduta per urto agli ioni del reticolo del conduttore e si manifesta come energia termica: effetto Joule • L’energia e` fornita, in ultima analisi, dal generatore
Potenza dissipata • La potenza Joule è uguale all’energia dissipata diviso il tempo • È fornita dal generatore elettrico • Dimensioni fisiche • Unità di misura • Forme alternative (per conduttori ohmici)