1 / 29

Rosendo D í az-Mendoza and Hector Budman ADCHEM 2009 July 12–15 2009

Robust Nonlinear Model Predictive Control using Volterra Models and the Structured Singular Value (  ). Rosendo D í az-Mendoza and Hector Budman ADCHEM 2009 July 12–15 2009. Background and Motivation. Background and Motivation. Chemical processes are nonlinear

hedia
Download Presentation

Rosendo D í az-Mendoza and Hector Budman ADCHEM 2009 July 12–15 2009

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Robust Nonlinear Model Predictive Control using Volterra Models and the Structured Singular Value () Rosendo Díaz-Mendoza and Hector Budman ADCHEM 2009 July 12–15 2009

  2. Background and Motivation Background and Motivation • Chemical processes are nonlinear • Nonlinear Model Predictive Control (NMPC) • First principles or empirical models • Robustness issues • Robustness of NMPC • Simulation studies for different parameter values • Develop a Robust-NMPC methodology that considers parameter uncertainty Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV

  3. Introduction Model Predictive Control Model Predictive Control MPC • Parameters: • p,prediction horizon • m, control horizon • p ≥ m • ny, number of outputs • nu, number of inputs A model is required to calculate ŷ Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV

  4. Introduction Volterra Models Volterra Models Why Volterra Models? • Represent a wide variety of nonlinear behavior • Model structure: nominal model + uncertain model • M,system memory • nu, number of inputs • x є [1,,ny]; ny, number of outputs Schetzen, M., The Volterra and Wiener theories of nonlinear systems; Robert E. Krieger, 1989 Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV

  5. Introduction Volterra Models Volterra Models CA CA+CB cooling fluid CSTR A→B cooling fluid • Truncation error (M = 3) • High order dynamics Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV

  6. Introduction Volterra Models Volterra Models Identification • Multilevel pseudo random binary sequence (PRBS) • Nominal value = mean (parameters) • Uncertainty = 2  (parameters) Nowak, R. D., and Van Veen, B. D. (1994). Random and pseudorandom inputs for Volterra filter identification, IEEE Transactions on Signal Processing, 42 (8), 2124–2135. Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV

  7. Introduction Volterra Models Volterra Models Output equation with parameter uncertainty SISO System • hn, hi,j, nominal value • hn, hi,j, parameter uncertainty Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV

  8. Introduction Volterra Models Volterra Models Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV

  9. Introduction Nonlinear Model Predictive Control Nonlinear Model Predictive Control SISO System How to consider parameter uncertainty? Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV

  10. Introduction Nonlinear Model Predictive Control Nonlinear Model Predictive Control Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV

  11. Introduction Nonlinear Model Predictive Control Nonlinear Model Predictive Control Structured Singular Value () Calculation of the worst ŷ(k) to ŷ(k+p) when parameter uncertainty is taken in consideration, i. e., for ŷ(k) Doyle, J., (1982). Analysis of feedback systems with structured uncertainties, IEE Proceedings D Control Theory & Applications, 129 (6), 242–250 Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV

  12. Introduction Nonlinear Model Predictive Control Nonlinear Model Predictive Control Structured Singular Value  (SSV) SSV Theorem Skew  problem (convex) Braatz, R. D., Young, P. M., Doyle, J. C., and Morari, M. (1994). Computational complexity of  calculation, IEEE Transactions on Automatic Control, 39 (5), 1000–10002. Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV

  13. Introduction Nonlinear Model Predictive Control D M Nonlinear Model Predictive Control M, interconnection matrix Δ, uncertainty block structure Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV

  14. Introduction Nonlinear Model Predictive Control Interconnection Matrix Example 0 0 Uncertain Nominal Feedback Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV

  15. Introduction Nonlinear Model Predictive Control Nonlinear Model Predictive Control NMPC Cost Function Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV

  16. Introduction Nonlinear Model Predictive Control Nonlinear Model Predictive Control Additional terms Manipulated variables movement penalization Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV

  17. Introduction Nonlinear Model Predictive Control Nonlinear Model Predictive Control Additional terms Manipulated variables constraints Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV

  18. Introduction Nonlinear Model Predictive Control Nonlinear Model Predictive Control Additional terms Terminal Condition Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV

  19. Introduction Nonlinear Model Predictive Control Nonlinear Model Predictive Control NMPC Cost Function NMPC Algorithm at each sampling instant Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV

  20. Case Studies SISO Case Study SISO System CSTR with first order exothermic reaction CA • Control Specifications • CV: x1 (dimensionless reactant concentration) • MV: xc (cooling jacket di-mensionless temperature) • β: process disturbance Parameter Calculation • Multilevel PRBS • Parameter uncertainty CA+CB cooling fluid CSTR A→B cooling fluid Doyle III, F. J., Packard, A., and Morari, M. (1989). Robust controller design of a nonlinear CSTR, Chemical Engineering Science, 44 (9), 1929–1947. Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV

  21. Case Studies SISO Disturbance Characteristics Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV

  22. Case Studies SISO Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV

  23. Case Studies SISO Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV

  24. Case Studies SISO Sum absolute error Robust = 1.46 Sum absolute error Non-Robust = 1.55 6% improvement Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV

  25. Case Studies SISO 25 different disturbances for each weight Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV

  26. Case Studies MIMO D Sf X S P Fermenter Case Study MIMO System • X, biomass concentration • S, substrate concentration • P, product concentration • D, dilution rate • Sf, feed substrate concentration • Control Specifications • CV: X and P • MV: Dand Sf • YX/S: process disturbance Parameter calculation • Multilevel PRBS • Parameter uncertainty Saha, P., Hu, Q., and Rangaiah, G., P. (1999). Multi-input multi-output control of a continuous fermenter using nonlinear model based controllers, Bioprocess Engineering, 21, 533–542. Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV

  27. Case Studies MIMO Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV

  28. Preliminary Conclusions Preliminary Conclusions Conclusions • A Robust-NMPC algorithm was developed • The algorithm considers all the features of previous NMPC formulations • In average the robust controller results in better performance as the input weight is decreased Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV

  29. Preliminary Conclusions Challenges Current challenges • Computational demand • Multivariable control Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV

More Related