290 likes | 419 Views
Robust Nonlinear Model Predictive Control using Volterra Models and the Structured Singular Value ( ). Rosendo D í az-Mendoza and Hector Budman ADCHEM 2009 July 12–15 2009. Background and Motivation. Background and Motivation. Chemical processes are nonlinear
E N D
Robust Nonlinear Model Predictive Control using Volterra Models and the Structured Singular Value () Rosendo Díaz-Mendoza and Hector Budman ADCHEM 2009 July 12–15 2009
Background and Motivation Background and Motivation • Chemical processes are nonlinear • Nonlinear Model Predictive Control (NMPC) • First principles or empirical models • Robustness issues • Robustness of NMPC • Simulation studies for different parameter values • Develop a Robust-NMPC methodology that considers parameter uncertainty Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV
Introduction Model Predictive Control Model Predictive Control MPC • Parameters: • p,prediction horizon • m, control horizon • p ≥ m • ny, number of outputs • nu, number of inputs A model is required to calculate ŷ Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV
Introduction Volterra Models Volterra Models Why Volterra Models? • Represent a wide variety of nonlinear behavior • Model structure: nominal model + uncertain model • M,system memory • nu, number of inputs • x є [1,,ny]; ny, number of outputs Schetzen, M., The Volterra and Wiener theories of nonlinear systems; Robert E. Krieger, 1989 Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV
Introduction Volterra Models Volterra Models CA CA+CB cooling fluid CSTR A→B cooling fluid • Truncation error (M = 3) • High order dynamics Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV
Introduction Volterra Models Volterra Models Identification • Multilevel pseudo random binary sequence (PRBS) • Nominal value = mean (parameters) • Uncertainty = 2 (parameters) Nowak, R. D., and Van Veen, B. D. (1994). Random and pseudorandom inputs for Volterra filter identification, IEEE Transactions on Signal Processing, 42 (8), 2124–2135. Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV
Introduction Volterra Models Volterra Models Output equation with parameter uncertainty SISO System • hn, hi,j, nominal value • hn, hi,j, parameter uncertainty Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV
Introduction Volterra Models Volterra Models Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV
Introduction Nonlinear Model Predictive Control Nonlinear Model Predictive Control SISO System How to consider parameter uncertainty? Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV
Introduction Nonlinear Model Predictive Control Nonlinear Model Predictive Control Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV
Introduction Nonlinear Model Predictive Control Nonlinear Model Predictive Control Structured Singular Value () Calculation of the worst ŷ(k) to ŷ(k+p) when parameter uncertainty is taken in consideration, i. e., for ŷ(k) Doyle, J., (1982). Analysis of feedback systems with structured uncertainties, IEE Proceedings D Control Theory & Applications, 129 (6), 242–250 Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV
Introduction Nonlinear Model Predictive Control Nonlinear Model Predictive Control Structured Singular Value (SSV) SSV Theorem Skew problem (convex) Braatz, R. D., Young, P. M., Doyle, J. C., and Morari, M. (1994). Computational complexity of calculation, IEEE Transactions on Automatic Control, 39 (5), 1000–10002. Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV
Introduction Nonlinear Model Predictive Control D M Nonlinear Model Predictive Control M, interconnection matrix Δ, uncertainty block structure Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV
Introduction Nonlinear Model Predictive Control Interconnection Matrix Example 0 0 Uncertain Nominal Feedback Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV
Introduction Nonlinear Model Predictive Control Nonlinear Model Predictive Control NMPC Cost Function Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV
Introduction Nonlinear Model Predictive Control Nonlinear Model Predictive Control Additional terms Manipulated variables movement penalization Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV
Introduction Nonlinear Model Predictive Control Nonlinear Model Predictive Control Additional terms Manipulated variables constraints Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV
Introduction Nonlinear Model Predictive Control Nonlinear Model Predictive Control Additional terms Terminal Condition Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV
Introduction Nonlinear Model Predictive Control Nonlinear Model Predictive Control NMPC Cost Function NMPC Algorithm at each sampling instant Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV
Case Studies SISO Case Study SISO System CSTR with first order exothermic reaction CA • Control Specifications • CV: x1 (dimensionless reactant concentration) • MV: xc (cooling jacket di-mensionless temperature) • β: process disturbance Parameter Calculation • Multilevel PRBS • Parameter uncertainty CA+CB cooling fluid CSTR A→B cooling fluid Doyle III, F. J., Packard, A., and Morari, M. (1989). Robust controller design of a nonlinear CSTR, Chemical Engineering Science, 44 (9), 1929–1947. Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV
Case Studies SISO Disturbance Characteristics Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV
Case Studies SISO Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV
Case Studies SISO Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV
Case Studies SISO Sum absolute error Robust = 1.46 Sum absolute error Non-Robust = 1.55 6% improvement Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV
Case Studies SISO 25 different disturbances for each weight Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV
Case Studies MIMO D Sf X S P Fermenter Case Study MIMO System • X, biomass concentration • S, substrate concentration • P, product concentration • D, dilution rate • Sf, feed substrate concentration • Control Specifications • CV: X and P • MV: Dand Sf • YX/S: process disturbance Parameter calculation • Multilevel PRBS • Parameter uncertainty Saha, P., Hu, Q., and Rangaiah, G., P. (1999). Multi-input multi-output control of a continuous fermenter using nonlinear model based controllers, Bioprocess Engineering, 21, 533–542. Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV
Case Studies MIMO Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV
Preliminary Conclusions Preliminary Conclusions Conclusions • A Robust-NMPC algorithm was developed • The algorithm considers all the features of previous NMPC formulations • In average the robust controller results in better performance as the input weight is decreased Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV
Preliminary Conclusions Challenges Current challenges • Computational demand • Multivariable control Diaz-Mendoza R. and Budman H Robust NMPC using Volterra Models and the SSV