E N D
1. Chapter 1Tools of Geometry Sec 1 – 1
Patterns and Inductive Reasoning
2. Inductive Reasoning – Is reasoning that is based on patterns you observe.
If you observe a pattern in a sequence you can use inductive reasoning to find the next term.
Ex. 1: Find the next term in the sequence:
A) 3, 6, 12, 24, ___, ___
B) 1, 2, 4, 7, 11, 16, 22, ___, ___
C)
3. Inductive Reasoning assumes that an observed pattern will continue. This may or may not be true.
Ex: x = x • x
This is true only for x = 0 and x = 1
Conjecture – A conclusion you reach using inductive reasoning.
4. Ex. 2: Make a conjecture about the sum of the first 30 odd numbers.
6. Counter Example – To a conjecture is an example for which the conjecture is incorrect.
Ex.1-3: The first 3 odd prime numbers are 3, 5, 7. Make a conjecture about the 4th.
3, 5, 7, ___
One would think that the rule is add 2, but that gives us 9 for the fourth prime number.
Is that true?
What is the next odd prime number?
9. Homework Page 6
1-53 odd and 2,26,40,44,48
10.
11.
12.
13.
14.
15.