1 / 29

Chapter 8: Dynamics of Climate Change

Chapter 8: Dynamics of Climate Change. Economy and Environment. 8.1 Energy Transfer in the Climate System. Open system : The human body receives food, water, and nutrients and releases waste products and heat

helia
Download Presentation

Chapter 8: Dynamics of Climate Change

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 8: Dynamics of Climate Change

  2. Economy and Environment

  3. 8.1 Energy Transfer in the Climate System • Open system: The human body receives food, water, and nutrients and releases waste products and heat • Closed system: The atmosphere allows energy to enter but restricts other materials from entering or exiting.

  4. Feedback Loops in the Earth’s Closed System • Earth being a closed system, it must circulate all of its matter within its boundary. • The interactions between the earth’s materials create a feedback loop (i.e. A impacts B which impacts C impacting A again) B C A

  5. Positive Feedback Loops • A positive feedback loop is a feedback system where each of the items on the loops will increases its effects every cycle

  6. Decrease in grades Negative Feedback Loops • A negative feedback loop is a feedback system where each cycle brings the system closer towards equilibrium. • Each cycle will decrease the effects of the items in the loop

  7. Energy and Heat on Earth • The earth has 3 main types of energy transfer that help to heat the earth: • Radiation: Electromagnetic radiation in the form of waves emitted by a heat source.-Radiation can be either absorbed, reflected or refracted. • Conduction: The transfer of energy between two objects • Convection: The transfer of energy due to moving objects (e.g. liquid, gas [not solid])

  8. Conduction, Convection, Radiation

  9. Conduction, Convection, and Radiation in the Earth’s Atmosphere • On Board (Figure 8.4)

  10. Earth’s Energy Budget • Energy is either:  absorbed by the clouds, atmosphere or land (70%) reflected by the clouds, atmosphere, or land (30%) • The measure of the clouds and land structures (ice, snow) ability to reflect solar radiation is known as its albedo.

  11. Albedo Values for Varies Earth Structures

  12. Global Warming and Albedo • Dark coloured earth structures mainly absorb radiation = low albedo • Light coloured structures reflect radiation = high albedo • The more ice that melts the greater amount of radiation will be emitted resulting in increased temperatures. • However, increased temperatures cause more evaporation, which increases cloud cover, which increases albedo

  13. Energy Transfer in the Oceans • Ocean circulation occurs due to the thermohaline circulation (affected by temperature and salt) • The current is referred to as “the great ocean conveyer belt” • Water at the poles is colder/saltier = more dense = sinking • As cold water sinks, warm water rises to the surface creating a warm surface flow. • In this manner energy is transferred throughout the oceans

  14. Global Warming and Thermohaline Circulation • Global warming causes an increase the overall temperature • Leads to melted ice at the poles = less saline water = less dense water = does not sink • Leads to increased evaporation at the tropics = more saline water = more dense = sinking • These effects may reverse the thermohaline circulation or stop it entirely resulting in uneven distribution of energy in the ocean

  15. In Class Work Time

  16. 8.2. Greenhouse Gases and Human Activity • Carbon dioxide in the Earth’s atmosphere is currently approximately 370 ppm • What does this mean? • It means that of every one million parts in the atmosphere, 370 are carbon dioxide

  17. Atmosphere Composition • 90% of the atmosphere is made up of N2 (nitrogen) and O2 (oxygen) • These are not greenhouse gases • Greenhouse gases are water vapour, carbon dioxide, methane, nitrous oxide, ozone. • Source: Processes that add greenhouse gases • Sinks: Processes that remove greenhouse gases

  18. Greenhouse Gases

  19. Sources and Sinks • The source of carbon dioxide in the atmosphere is primarily due to animal respiration. • Human’s burn fossils which also contributes to carbon dioxide • Plants/phytoplankton remove carbon dioxide making them carbon sinks

  20. Methane • Common to bogs and swamps (e.g. wetlands) • Cattle contribute a large portion of the methane production through gas release. • Waste products (manure) also contributes to methane production.

  21. Solutions

  22. Nitrogen Oxide • From damp tropical soils and the oceans • Anthropogenic sources: Chemical fertilizers, manure, vehicle exhausts

  23. Ozone (O3) • Occurs naturally in the atmosphere • Blocks harmful UV radiation

  24. Ozone Depletion • Ozone has been depleting for the last 30 years • Depleted ozone allows for harmful UV radiation to pass through the atmosphere • Increases cancers of the skin • Caused by chlorine containing gases

  25. Ground Level Ozone • Ozone can also be found at ground level due in the form of smog • Smog is composed of sunlight and vehicle exhaust chemicals • Smog causes damage to the lungs and heart

  26. Halocarbons • Are carbons bound by halogens • Most common halocarbon found in the atmosphere is chlorofluorocarbons (CFC’s) • Are gases that have depleted the ozone over Antarctica • Found in solvents, cleaners, old refrigerators

  27. Global Warming Potential (GWP)

  28. Reducing Greenhouse Gases • Conserve electricity: • Energy efficient lights, new appliances, conserve. • Improve home heating • Update furnace, retrofit (windows and seals) • Reduce, re-use, and recycle • Be frugal in using products, reuse products, and dispose in the correct bins.

  29. 8.3 Jigsaw Activity • In this activity groups of four will be made • Each student within the group will be given a number (i.e. 1, 2, 3, 4) • Each student must read these pages and summarize the key ideas to the group along with any figures • Student 1: Read pages 333-334 ( up to “The Global Carbon Budget”) • Student 2: Read page 334 (“The Global Carbon Budget”) and page 335 (The carbon cycle) • Student 3: Read page 336 (“How human act…) and page 337 • Student 4: Read pages 338-339.

More Related