880 likes | 1.3k Views
ECIV 720 A Advanced Structural Mechanics and Analysis. Lecture 16 & 17: Higher Order Elements (review) 3-D Volume Elements Convergence Requirements Element Quality. Higher Order Elements. Complete Polynomial. 4 Boundary Conditions for admissible displacements. Quadrilateral Elements.
E N D
ECIV 720 A Advanced Structural Mechanics and Analysis Lecture 16 & 17: Higher Order Elements (review) 3-D Volume Elements Convergence Requirements Element Quality
Higher Order Elements Complete Polynomial 4 Boundary Conditions for admissible displacements Quadrilateral Elements Recall the 4-node 4 generalized displacements ai
Higher Order Elements Quadrilateral Elements Assume Complete Quadratic Polynomial 9 generalized displacements ai 9 BC for admissible displacements
9-node quadrilateral BT18x3 D3x3 B3x18 ke 18x18 9-nodes x 2dof/node = 18 dof
9-node element Shape Functions 4 3 Corner Nodes h 7 6 9 8 Mid-Side Nodes x 5 1 2 Middle Node Following the standard procedure the shape functions are derived as
Polynomials & the Pascal Triangle x y 1 0 x2 xy y2 2 x3 x2y xy2 y3 3 x4 x3y y4 xy3 4 x2y2 x5 x4y xy4 y5 x2y3 5 x3y2 Pascal Triangle Degree 1 …….
Polynomials & the Pascal Triangle 1 4-node Quad Q1 Q2 x y x2 xy y2 x3 x2y xy2 y3 x4 x3y y4 xy3 x2y2 x5 x4y xy4 y5 x2y3 x3y2 9-node Quad ……. To construct a complete polynomial etc
Incomplete Polynomials 1 x y x2 xy y2 x3 x2y xy2 y3 x4 x3y y4 xy3 x2y2 x5 x4y xy4 y5 x2y3 x3y2 ……. 3-node triangular
Incomplete Polynomials 1 x y x2 xy y2 x3 x2y xy2 y3 x4 x3y y4 xy3 x2y2 x5 x4y xy4 y5 x2y3 x3y2 …….
8-node quadrilateral h 4 3 7 x 6 8 5 1 2 Assume interpolation 8 coefficients to determine for admissible displ.
8-node quadrilateral BT16x3 D3x3 B3x16 ke 16x16 8-nodes x 2dof/node = 16 dof
8-node element Shape Functions 4 3 Corner Nodes 7 6 8 5 Mid-Side Nodes 1 2 Following the standard procedure the shape functions are derived as h x
Incomplete Polynomials 1 x y x2 xy y2 x3 x2y xy2 y3 x4 x3y y4 xy3 x2y2 x5 x4y xy4 y5 x2y3 x3y2 …….
6-node Triangular 3 6 5 1 2 4 Assume interpolation 6 coefficients to determine for admissible displ.
6-node triangular 3 BT12x3 D3x3 B3x12 6 5 ke 12x12 1 2 4 6-nodes x 2dof/node = 12 dof
6-node element Shape Functions 3 Corner Nodes 6 5 Mid-Side Nodes 1 2 4 Following the standard procedure the shape functions are derived as Li:Area coordinates
Other Higher Order Elements 1 h 4 3 x y x2 xy y2 x3 x2y xy2 y3 x x4 x3y y4 xy3 x2y2 1 2 x5 x4y xy4 y5 x2y3 x3y2 ……. 12-node quad
Other Higher Order Elements 1 h 4 3 x y x2 xy y2 x3 x2y xy2 y3 x x4 x3y y4 xy3 x2y2 1 2 x5 x4y xy4 y5 x2y3 x3y2 x3y2 ……. 16-node quad
3-D Stress State Assumption Small Deformations
Strain Displacement Relationships Material Matrix
3-D Finite Element Analysis 12 11 10 9 3 8 7 2 6 1 5 4 Solution Domain is VOLUME Simplest Element (Lowest Order) Tetrahedral Element
3-D Tetrahedral Element 3 (0,0,1) z 4 (0,0,0) h 2 (0,1,0) 1 (1,0,0) Parent (Master) x Can be thought of an extension of the 2D CST
3-D Tetrahedral 4 3 z 1 2 h x Shape Functions Volume Coordinates
Geometry – Isoparametric Formulation In view of shape functions
Strain-Displacement Matrix B is CONSTANT
Stiffness Matrix Element Strain Energy
Force Terms Body Forces
Element Forces 4 3 1 2 Surface Traction Applied on FACE of element eg on face 123
Stress Calculations Constant Stress Tensor se= DB qe Stress Invariants
Stress Calculations Principal Stresses
Other Low Order Elements 4 5 6 7 8 5 3 6 1 1 2 3 2 18 dof 5-hedral 24 dof 6-hedral
Degenerate Elements 5 5 6 7 8 ,7 6 4 8 1 3 2 1 2 ,3 Still has 24 dof
Degenerate 5,6,7,8 4 5 6 7 8 1 1 2 3 2,3 Still has 24 dof
Higher Order Elements 10-node 4-hedral 4 4 9 10 9 8 1 7 3 10 8 3 5 6 7 15 6 1 2 5 14 13 Z 2 Y X
15-node 5-hedral z 15 12 4 6 L 2 10 11 5 14 10 5 13 13 15 4 11 12 L 14 14 6 3 9 1 3 13 7 8 15 2 L 2 7 1 1 8 9 3 Z Y X
20-node 6-hedral z 24 23 8 16 15 22 5 20 h 7 x 13 14 6 17 4 19 12 11 18 1 3 Z 9 10 2 Y X
Convergence Considerations For monotonic convergence of solution Requirements Elements (mesh) must be compatible Elements must be complete
Monotonic Convergence FEM Solution Exact Solution No of Elements For monotonic convergence the elements must be complete and the mesh must be compatible
Mixed Order Elements Consider the following Mesh 4-node 8-node Incompatible Elements…
Mixed Order Elements We can derive a mixed order element for grading 4-node 8-node 7-node By blending shape functions appropriately
Convergence Considerations For monotonic convergence of solution Requirements Elements (mesh) must be compatible Elements must be complete