1 / 22

PETE code Review

A detailed review of PETE code exploring Expression Templates, Syntax Trees, and Encoding with examples. Future work and conclusions discussed.

hermana
Download Presentation

PETE code Review

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PETE code Review Xingmin Luo 6/12/2003

  2. Outline • Overview • Motivation • Expression Templates • Syntax tree • Encoding syntax tree with Expression Templates • Trace results of 3 kinds of expressions • b = 1; c = 2; d = 3; • b = c; • a = b + c + d; • Future Work and Conclusions

  3. Motivation • Discover how and why PETE works? • How to modify PETE code to support Psi calculus; for example, where (which files) we should change to support reverse operation in Convolution.

  4. Expression Templates • const Expression <BinaryNode<OpAdd, Reference<Array>, Reference<Array> > > &expr1 = b + c; • const Expression <BinaryNode<OpAdd, Reference<Array>, BinaryNode<OpMultiply, Scalar<int>, Reference<Array> > > > &expr2 = b + 3 * c; • const Expression<BinaryNode<OpAdd, Reference<Array>, BinaryNode<OpMultiply, Reference<Array>, Reference<Array> > > > &expr3 = b + c * d;

  5. Syntax trees + + + b c b * b * 3 c c d (1) (2) (3) b + c b + 3 * c b + c * d

  6. Encoding syntax trees with expression Templates (ET) - 1 + b c (1) • const Expression <BinaryNode<OpAdd, Reference<Array>, Reference<Array> > > &expr1 = b + c;

  7. Encoding syntax trees with expression Templates (ET) - 2 + b * 3 C (2) b + 3 * c const Expression <BinaryNode<OpAdd, Reference<Array>, BinaryNode<OpMultiply, Scalar<int>, Reference<Array> > > > &expr2 = b + 3 * c;

  8. Encoding syntax trees with expression Templates (ET) - 3 + b * c d (3) b + c * d • const Expression<BinaryNode<OpAdd, Reference<Array>, BinaryNode<OpMultiply, Reference<Array>, Reference<Array> > > > &expr3 = b + c * d;

  9. Files • PETE ( pete.h ) includes the following files • #include "PETE/Scalar.h" • #include "PETE/TypeComputations.h" • #include "PETE/TreeNodes.h" • #include "PETE/OperatorTags.h" • #include "PETE/Functors.h" • #include "PETE/Combiners.h" • #include "PETE/ForEach.h" • #include "PETE/CreateLeaf.h“ • Our implementations • Array.cpp • Array.h

  10. Variables declaration and definition • Array.cpp vector <int> shape; Array <int> a(shape), b(shape), c(shape), d(shape); • Array.h Array(const vector <int> shape) { long i, sum; sum=1; for (i=0; i<shape.size(); i++) { sum = sum * shape[i]; (this->shape).push_back(shape[i]); } this->size = sum; this->d = my_malloc(sum*sizeof(T)); } private: T * d; vector <int> shape; long size;

  11. Trace result of b=1;c=2;d=3; • Array.cpp b=1;c=2;d=3; • Array.h Array &operator=(T value) { for(long i=0; i<this->size; i++) d[i] = value; return *this; } private: T * d; vector <int> shape; long size;

  12. Trace result of b=c; • Array.cpp b=c; • Array.h Array &operator=(const Array &v) { for(long i=0; i<this->size; i++) d[i] = v.d[i]; return *this; } private: T * d; vector <int> shape; long size;

  13. Trace result of a = b + c + d; (1) • Array.cpp a = b + c + d; • Array.h template<class RHS> Array &operator=(const Expression<RHS> &rhs) { for(long i=0; i<this->size; i++) d[i] = forEach(rhs, EvalLeaf1(i), OpCombine()); return *this; } private: T * d; vector <int> shape; long size;

  14. Trace result of a = b + c + d; (2) • ForEach.h CLASS NAME ForEach<Expr, FTag, CTag> forEach(Expr& e, FTag& f, CTag& c) //call this function //same as ForEach::apply // Expr is the type of the expression tree. // FTag is the type of the leaf tag.(specifies the operation being applied) // CTag is the type of the combiner tag. // ForEach<Expr,FTag,CTag>::apply(Expr &e,FTag& f,CTag& c) is a function // that traverses the expression tree defined by e, applies the functor f // to each leaf and combines the results together using the combiner c. // The type of object returned is given by: // typename ForEach<Expr,FTag,CTag>::Type_t // the function forEach(Expr& e,FTag& f,CTag& c) duplicates the action // of ForEach::apply

  15. Trace result of a = b + c + d; (3) • ForEach.h template<class Expr, class FTag, class CTag> inline typename ForEach<Expr,FTag,CTag>::Type_t forEach(const Expr &e, const FTag &f, const CTag &c) { return ForEach<Expr, FTag, CTag>::apply(e, f, c); } template<class Expr, class FTag, class CTag> struct ForEach { typedef typename LeafFunctor<Expr, FTag>::Type_t Type_t; inline static Type_t apply(const Expr &expr, const FTag &f, const CTag &) { return LeafFunctor<Expr, FTag>::apply(expr, f); } };

  16. Trace result of a = b + c + d; (4) • CreateLeaf.h (defines expression tree) template<class T> class Expression { public: // Type of the expression. typedef T Expression_t; // Construct from an expression. Expression(const T& expr) : expr_m(expr) { } // Accessor that returns the expression. const Expression_t& expression() const { return expr_m; } private: // Store the expression by value since it is a temporary produced // by operator functions. T expr_m; };

  17. Trace result of a = b + c + d; (5) • Functors.h (functors define here, however....) // LeafFunctors are used by ForEach to apply operations to the leaves of the // expression tree. Typical functors are evaluators, counters, etc. struct EvalLeaf1 { int i1_m; inline EvalLeaf1(int i1) : i1_m(i1) { } inline int val1() const { return i1_m; } }; • Array.h specializes EvalLeaf1 function template<class T> struct LeafFunctor<Array <T>, EvalLeaf1> { typedef T Type_t; static Type_t apply(const Array <T> &a, const EvalLeaf1 &f) { return a[f.val1()]; } };

  18. Trace result of a = b + c + d; (6) • Combiners.h (defines combiner tag) struct OpCombine { PETE_EMPTY_CONSTRUCTORS(OpCombine) }; template<class A,class Op> struct Combine1<A, Op, OpCombine> { typedef typename UnaryReturn<A, Op>::Type_t Type_t; inline static Type_t combine(A a, Op op, OpCombine) { return op(a); } }; template<class A,class B,class Op> struct Combine2<A, B, Op, OpCombine> { typedef typename BinaryReturn<A, B, Op>::Type_t Type_t; inline static Type_t combine(A a, B b, Op op, OpCombine) { return op(a, b); } }; template<class A,class B,class C,class Op> struct Combine3<A, B, C, Op, OpCombine> { typedef typename TrinaryReturn<A, B, C, Op>::Type_t Type_t; inline static Type_t combine(A a, B b, C c, Op op, OpCombine) { return op(a, b, c); } };

  19. user defined Expression <> tree examples • Array.cpp Array <int> d; const Expression<BinaryNode<OpAdd, Reference<Array>, Reference<Array> > > &expr1 = b + c; d = expr1; cout << d << endl; int num = forEach(expr1, CountLeaf(), SumCombine()); cout << num << endl; const Expression<BinaryNode<OpAdd, Reference<Array>, BinaryNode<OpMultiply, Scalar<int>, Reference<Array> > > > &expr2 = b + 3 * c; num = forEach(expr2, CountLeaf(), SumCombine()); cout << num << endl; const Expression<BinaryNode<OpAdd, Reference<Array>, BinaryNode<OpMultiply, Reference<Array>, Reference<Array> > > > &expr3 = b + c * d; num = forEach(expr3, CountLeaf(), SumCombine()); cout << num << endl;

  20. Future Work • Modify PETE code to support Psi operations. • Extend our current implementation of the Psi calculus • Build high-level Psi calculus tools

  21. Conclusions • PETE’s Expression templates provide the ability to perform compiler preprocessor-style optimizations (expression tree manipulation) • The C++ template mechanism can be applied to a wide variety of problems (e.g. tree traversal ala PETE, graph traversal, list traversal) to gain run-time speedup at the expense of compile time/space

  22. Acknowlegements • Prof. Lenore Mullin • Prof. Dan Rosenkrantz • Prof. Harry Hunt

More Related