1 / 51

AY202a Galaxies & Dynamics Lecture 2: Basic Cosmology, Galaxy Morphology

AY202a Galaxies & Dynamics Lecture 2: Basic Cosmology, Galaxy Morphology. COSMOLOGY is a modern subject: The basic framework for our current view of the Universe rests on ideas and discoveries (mostly) from the early 20 th century. Basics:

herve
Download Presentation

AY202a Galaxies & Dynamics Lecture 2: Basic Cosmology, Galaxy Morphology

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. AY202a Galaxies & DynamicsLecture 2: Basic Cosmology, Galaxy Morphology

  2. COSMOLOGY is a modern subject: The basic framework for our current view of the Universe rests on ideas and discoveries (mostly) from the early 20th century. Basics: Einstein’s General Relativity The Copernican Principle Fundamental Observations & Principles

  3. Fundamental Observations: The Sky is Dark at Night (Olber’s P.) The Universe is Homogeneous on large scales (c.f. the CMB) The Universe is generally Expanding The Universe has Stuff in it, and the stuff is consistent with a hot origin: Tcmb = 2.725o

  4. Basic Principles: • Cosmological Principle: (aka the Copernican principle). There is no preferred place in space --- the Universe should look the same from anywhere The Universe is HOMOGENEOUS and ISOTROPIC.

  5. Principles: Perfect Cosmological Principle: The Universe is also the same in time. The STEADY STATE Model (XXX) Anthropic Cosmological Principle: We see the Universe in a preferred state(time etc.) --- when Humans can exist

  6. Principles: Relativistic Cosmological Principle: The Laws of Physics are the same everywhere and everywhen (!!!) absolutely necessary (!!!) And we constantly check these

  7. Mathematical Cosmology The simplest questions are Geometric. How is Space measured? Standard 3-Space Metric: ds2 = dx2 + dy2 + dz2 = dr2 +r2dθ2 + r2sin2θdf2 In Cartesian or Spherical coordinates in Euclidean Space.

  8. Now make our space Non-Static, but “homogeneous” & “isotropic”  ds2 = R2(t)(dx2+ dy2 + dz2) And then allow transformation to a more general geometry (i.e. allow non-Euclidean geometry) but keep isotropic and homogeneous:

  9. ds2 = (1+1/4kr2) -2 (dx2+dy2+dz2)R2(t) where r2 = x2 + y2 + z2, and k is a measure of space curvature. Note the Special Relativistic Minkowski Metric ds2 = c2dt2 – (dx2 +dy2 + dz2)

  10. So, if we take our general metric and add the 4th (time) dimension, we have: ds2 = c2dt2 – R2(t)(dx2 +dy2 + dz2)/(1+kr2/4) or in spherical coordinates and simplifying, ds2 = c2dt2 – R2(t)[dr2/(1-kr2)+ r2(dq2+sin2q df2)] which is the (Friedman)-Robertson-Walker Metric, a.k.a. FRW

  11. The FRW metric is the most general, non-static, homogeneous and isotropic metric. It was derived ~1930 by Robertson and Walker and perhaps a little earlier by Friedman. R(t), the Scale Factor, is an unspecified function of time (which is usually assumed to be continuous) and k = 1, 0, or -1 = the Curvature Constant For k = -1 or 0, space isinfinite

  12. Rasin Bread Analogy

  13. K = +1 Spherical c < pr K = -1 Hyperbolic c > pr K = 0 Flat c = pr

  14. What about the scale factor R(t)? R(t) is specified by Physics we can use Newtonian Physics (the Newtonian approximation) but now General Relativity holds. Start with Einstein’s (tensor) Field Equations Gmu= 8pTmn + Lgmu and Gmu= Rmn - 1/2 gmu R

  15. Where Tmn is the Stress Energy tensor Rmn is the Ricci tensor gmu is the metric tensor Gmu is the Einstein tensor and R is the scalar curvature  Rmn - 1/2 gmu R = 8pTmn + Lgmu is the Einstein Equation

  16. The vector/scalar terms of the Tensor Equation give Einstein’s Equations: (dR/dt)2/R2 + kc2/R2 = 8pGe/3c2+Lc2/3 energy density CC 2(d2R/dt2)/R + (dR/dt)2/R + kc2/R2 = -8pGP/c3+Lc2 pressure term CC

  17. And Friedman’s Equations: (dR/dt)2 = 2GM/R + Lc2R2/3 – kc2 So the curvature of space can be found as  kc2 = Ro2[(8pG/3)ro – Ho2] if L = 0 (no Cosmological Constant) or (dR/dt)2/R2- 8pGro /3 =Lc2/3 – kc2/R2 which is known as Friedman’s Equation

  18. Critical Density Given kc2 = Ro2 [(8pG/3)ro – Ho2] With no cosmological constant, k = 0 if (8pG/3)ro = Ho2 So we can define the “critical density” as ρcrit =3H02/ 8πG = 9.4 x 10-30 g/cm3 for H=70 km/s/Mpc

  19. COSMOLOGICAL FRAMEWORK: The Friedmann-Robertson-Walker Metric + the Cosmic Microwave Background =THEHOTBIGBANG

  20. Λ

  21. Cosmology is now the search for three numbers + the geometry: . 1. The Expansion Rate = Hubble’s Constant H0 2. The Mean Matter Density = Ω(matter) = ΩM 3. The Cosmological Constant = Ω(lambda)= ΩΛ 4. The Geometric Constant k = -1, 0, +1 Nota Bene: H0 = (dR/dt)/R Taken together, these numbers describe the geometry of space-time and its evolution. They also give you the Age of the Universe.

  22. The best routes to the first two are in the Nearby Universe: H0 is determined by measuring distances and redshifts to galaxies. It changes with time in real FRW models so by definition it must be measured locally. W(matter) is determined locally by (1) a census, (2) topography, or (3) gravity versus the velocity field (how things move in the presence of lumps).

  23. Other Basics Units and Constants: Magnitudes & Megaparsecs http://www.cfa.harvard.edu/~huchra/ay145/constants.html http://www.cfa.harvard.edu/~huchra/ay145/mags.html For magnitudes, always remember to think about central wavelength, band-pass and zero point. E.g. Vega vs AB. Surface brightness (magnitudes per square arcsecond), like magnitudes, is logarithmic and does not “add”. Why are magnitudes still the unit of choice?

  24. Coordinate Systems 2-D: Celestial = Equatorial (B1950, J2000) (precession, fundamental grid) Ecliptic Alt-Az (observers only) Galactic (l & b) Supergalactic (SGL & SGB) 3-D: Heliocentric, LSR Galactocentric, Local Group CMB Reference Frame (bad!)

  25. Galactic Coordinates Tied to MW. B1950 (Besselian year) NGP at 12h49m +27.4o NCP at l=123ob=+27.4o J2000 (Julian year) NGP at 12h51m26.28s +27o07’42.01” NCP at l=122.932o b=27.128o

  26. Supergalactic Coordinates

  27. Supergalactic Coordinates Equator along supergalactic plane Zero point of SGL at one intersection with the Galactic Plane NSGP at l = 47.37o, b=+6.32o J2000 ~18.9h +15.7o SGB=0, SGL=0 at l = 137.37o b = 0o Lahav et al 2000, MNRAS 312, 166L

  28. Galaxy Morphology “Simple” observable properties Classification goal is to relate form to physics. First major scheme was Hubble’s “Tuning Fork Diagram” • Hubble’s original scheme lacked the missing link S0 galaxies, even as late as 1936 • Ellipticity defined as e = 10(a-b)/a ≤ 7 observationally • Hubble believe that his sequence was an evolutionary sequence. • Hubble also thought there were very few Irr gals.

  29. Hubble types now not considered evolutionary although there are connnections between morphology and evolution. Hubble types have been considerably embellished by Sandage, deVaucouleurs and van den Bergh, etc. • Irr  Im (Magellanic Irregulars) + I0 (Peculiar galaxies) • Sub classes have been added, S0/a, Sa, Sab, Sb … • S0 class well established (DV  L+, L0 and L-) • Rings, mixed types and peculiarities added (e.g. SAbc(r)p = open Sbc with inner ring and peculiarities)

  30. S. van den Bergh introduced two additional schema: • Luminosity Classes --- a galaxy’s appearance is related to its intrinsic L. • Anemic Spirals --- very low surface brightness disks that probably result from the stripping of gas (c.f. Nature versus Nurture debate) Morgan also introduced spectral typing of galaxies as in stars a, af, f, fg, g, gk, k

  31. Luminosity Classes (S vdB + S&T Cal) Real scatter much(!) larger

  32. Other embellishments of note: Morgan et al. during the search for radio galaxies introduced N, D, cD Arp (1966) Atlas of Peculiar Galaxies Some 30% of all NGC Galaxies are in the Arp or Vorontsov-Velyaminov atlases Arp and the “Lampost Syndrome” Zwicky’s Catalogue of Compact and Post-Eruptive Galaxies (1971)

  33. Surface Brightness Effects Arp (1965) WYSIWYG Normal galaxies lie in a restricted Range of SB (aka the Lampost Syndrome)

  34. By the numbers In a Blue selected, z=0, magnitude limited sample: 1/3 ~ E (20%) + S0 (15%) 2/3 ~ S (60%) + I (5%) Per unit volume will be different. also for spirals, very approximately 1/3 A ~ 1/3 X ~ 1/3 B

  35. Mix of types in any sample depends on selection by color, surface brightness, and even density. Note tiny fraction of Irregulars

  36. Quantitative Morphology Elliptical galaxy SB Profiles Hubble Law (one of four) I(r) = I0 (1 + r/r0)-2 I0 = Central Surface Brightness r0 = Core Radius Problem 4 π∫I(r) r dr diverges

  37. De Vaucouleurs R ¼ Law (a.k.a. Sersic profile with N=4) I(r) = Ie e -7.67 ((r/re) ¼ -1) re = effective or ½ light radius I e = surface brightness at re I0≈ e 7.67 Ie≈ 103.33 Ie≈ 2100 Ie re≈ 11 r0 and this is integrable [Sersic ln I(R) = ln I0 – kR1/n ]

  38. King profile (based on isothermal spheres fit to Globular Clusters) adds tidal cutoff term re≈ r0 rt = tidal radius I(r) = IK [(1 + r2/rc2)-1/2 – (1 + rt2/rc2)-1/2 ]2 And many others, e.g.: Oemler truncated Hubble Law Hernquist Profile NFW (Navarro, Frenk & White) Profile generally dynamically inspired

  39. King profiles Rt/Rc

  40. Typical numbers I0 ~ 15-19 in B <I0> ~ 17 Giant E r0 ~ 1 kpc re ~ 10 kpc

  41. Sersic profiles Small N, less centrally concentrated and steeper at large R

  42. Spiral Galaxies Characterized by bulges + exponential disks I(r) = IS e –r/rS Freeman (1970) IS ~ 21.65 mB / sq arcsec rS ~ 1-5 kpc, f(L) If Spirals have DV Law bulges and exponential disks, can you calculate the Disk/Bulge ratio for given rS, re, IS & Ie ?

  43. NB on Galaxy Magnitudes There are MANY definitions for galaxy magnitudes, each with its +’s and –’s Isophotal (to a defined limit in mag/sq arcsec) Metric (to a defined radius in kpc) Petrosian Integrated Total etc. Also remember COLOR

  44. Reading Assignment For next Wednesday The preface to Zwicky’s “Catalogue of Compact and Post-Eruptive Galaxies” and NFW “The Structure of Cold Dark Matter Halos,”1996, ApJ...463..563 Read, Outline, be prepared to discuss Zwicky’s comments and Hernquist’s profile.

  45. Hubble,1926 Investigated 400 extragalactic nebula in what he though was a fairly complete sample. Cook astrograph + 6” refractor (!) + 60” & 100” Numbers increased with magnitude Presented classification scheme (note no S0) 97% “regular” Sprials closest to E have large bulges Some spirals are barred

  46. E’s “more stellar with decreasing luminosity” mT = C - K log d 23% E 59% SA 15% SB 3% Irr II (no mixed types) Plots of characteristics. Fall off at M~12.5 Luminosity-diameter relation Edge on Spirals fainter Apparent vs actual Ellipticity -- inclination Absolute mags for small # with D’s

More Related