1.07k likes | 1.18k Views
INSTANTON PARTITION FUNCTIONS. Nikita Nekrasov IHES (Bures-sur-Yvette) & ITEP (Moscow) QUARKS-2008 May 25, 2008. Biased list of refs. NN, NN, A.Aleksandrov~2008; NN, A.Marshakov~2006; A.Iqbal, NN, A.Okounkov, C.Vafa~2004; A.Braverman ~2004; NN, A.Okounkov ~2003;
E N D
INSTANTON PARTITION FUNCTIONS Nikita Nekrasov IHES (Bures-sur-Yvette) & ITEP (Moscow) QUARKS-2008 May 25, 2008
Biased list of refs NN, NN, A.Aleksandrov~2008; NN, A.Marshakov~2006; A.Iqbal, NN, A.Okounkov, C.Vafa~2004; A.Braverman ~2004; NN, A.Okounkov ~2003; H.Nakajima, K.Yoshioka ~2003; A.Losev, NN, A.Marshakov ~2002; NN, 2002; A.Schwarz, NN, 1998; G.Moore, NN, S.Shatashvili ~1997-1998; A.Losev, NN, S.Shatashvili ~1997-1998; A.Gerasimov, S.Shatashvili ~ 2006-2007
Mathematical problem:counting Integers: 1,2,3,….
Mathematical problem:counting Integers: 1,2,3,….
Mathematical problem:counting Partitions of integers: (1) (2) (1,1) (3) (2,1) (1,1,1) …
Mathematical problem:counting Partitions of integers: (1) (2) (1,1) (3) (2,1) (1,1,1) …
Unexpected symmetry Dedekind eta
Mathematical problem:counting Plane partitions of integers: ((1)); ((2)),((1,1)),((1),1); ((3)),((2,1)),((1,1,1)),((2),(1)),((1),(1),(1));….
Mathematical problem:counting Plane partitions of integers: ((1)); ((2)),((1,1)),((1),1); ((3)),((2,1)),((1,1,1)),((2),(1)),((1),(1),(1));….
Quantum gauge theory Four dimensions
Quantum gauge theory Four dimensions
Quantum sigma model Two dimensions
Quantum sigma model Two dimensions
Instantons Minimize Euclidean action in a given topology of the field configurations Gauge instantons (Almost) Kahler target sigma model instantons
Counting Instantons Approximation for ordinary theories. Sometimes exact results for supersymmetric theories.
Counting Instantons Approximation for ordinary theories. Sometimes exact results for supersymmetric theories.
Instanton partition functions in four dimensions Supersymmetric N=4 theory (Vafa-Witten)
Instanton partition functions in four dimensions Supersymmetric N=4 theory (Vafa-Witten) Transforms nicely under a (subgroup of) SL(2, Z)
Instanton partition functions in four dimensions Supersymmetric N=4 theory (Vafa-Witten) Transforms nicely under a (subgroup of) SL(2, Z) Hidden elliptic curve:
Instanton partition functions in four dimensions Supersymmetric N=2 theory (Donaldson-Witten) Intersection theory on the moduli space of gauge instantons
Instanton partition functions in four dimensions Supersymmetric N=2 theory (Donaldson-Witten) Donaldson invariants of four-manifolds Seiberg-Witten invariants of four-manifolds
Instanton partition functions in four dimensions Supersymmetric N=2 theory On Euclidean space R4
Instanton partition functions in four dimensions Supersymmetric N=2 theory On Euclidean space R4 Boundary conditions at infinity SO(4) Equivariant theory
Instanton partition function Supersymmetric N=2 theory on Euclidean space R4
Instanton partition function Supersymmetric pure N=2 super YM theory on Euclidean space R4 Degree = Element of the ring of fractions of H*(BH) H = G X SO(4), G - the gauge group
Instanton partition function Supersymmetric N=2 super YM theory with matter
Instanton partition function Supersymmetric N=2 super YM theory with matter
Instanton partition function Supersymmetric N=2 super YM theory with matter Bundle of Dirac Zero modes In the instanton background
Instanton partition function Explicit evaluation using localization For pure super Yang-Mills theory:
Instanton partition function Compactification of the instanton moduli space to Add point-like instantons + extra stuff
Instanton partition function For G = U(N)
Instanton partition function Perturbative part (contribution of a trivial connection) For G = U(N)
Instanton partition function Instanton part For G = U(N) Sum over N-tuples of partitions
Instanton partition function Generalized growth model
Instanton partition function Generalized growth model
Instanton partition function Generalized growth model
Instanton partition function Generalized growth model
Instanton partition function Generalized growth model
Instanton partition function Generalized growth model
Instanton partition function Limit shape Emerging geometry
Instanton partition function Limit shape Emerging algebraic geometry