1 / 15

Partition Function

Partition Function. Physics 313 Professor Lee Carkner Lecture 24. Exercise #23 Statistics. Number of microstates from rolling 2 dice Which macrostate has the most microstates? 7 (1,6 6,1 5,2 2,5 3,4 4,3 total = 6) Entropy and dice

wayne
Download Presentation

Partition Function

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Partition Function Physics 313 Professor Lee Carkner Lecture 24

  2. Exercise #23 Statistics • Number of microstates from rolling 2 dice • Which macrostate has the most microstates? • 7 (1,6 6,1 5,2 2,5 3,4 4,3 total = 6) • Entropy and dice • Since the entropy tends to increase, after rolling a non-seven your next roll should have higher entropy • Why is 2nd law violated?

  3. Partition Function • We can write the partition function as: Z (V,T) = Sgi e -ei/kT • Z is a function of temperature and volume • We can find other properties in terms of the partition function (dZ/dT)V = ZU/NkT2 • we can re-write in terms of U U = NkT2 (dln Z/dT)V

  4. Entropy • We can also use the partition function in relation to entropy • but W is a function of N and Z, S = Nk ln (Z/N) + U/T + Nk • We can also find the pressure: P = NkT(dlnZ/dV)T

  5. Ideal Gas Partition Function • To find ideal gas partition function: • Result: Z = V (2pmkT/h2)3/2 • We can use this to get back our ideal gas relations • ideal gas law

  6. Equipartition of Energy • The kinetic energy of a molecule is: • Other forms of energy can also be written in similar form • The total energy is the sum of all of these terms • = (f/2)kT • This represents equipartition of energy since each degree of freedom has the same energy associated with it (1/2 k T)

  7. Degrees of Freedom • For diatomic gases there are 3 translational and 2 rotational so f = 5 • Energy per mole u = 5/2 RT (k = R/NA) • At constant volume u = cV T, so cV = 5/2 R • In general degrees of freedom increases with increasing T

  8. Speed Distribution • We know the number of particles with a specific energy: Ne = (N/Z) ge e -e/kT • We can then find dNv/dv = (2N/(2p)½)(m/kT)3/2 v2 e-(½mv2/kT)

  9. Maxwellian Distribution • What characterizes the Maxwellian distribution? • The tail is important

  10. Maxwell’s Tail • Most particles in a Maxwellian distribution have a velocity near the root-mean squared velocity: vrms = (3kT/m)1/2 • We can approximate the high velocities in the tail with:

  11. Entropy • We can write the entropy as: • Where W is the number of accessible states to which particles can be randomly distributed • We have no idea where an individual particle may end up, only what the bulk distribution might be

  12. Entropy and Information • More information = less disorder I = k ln (W0/W1) • Information is equal to the decrease in entropy for a system • Information must also cause a greater increase in the entropy of the universe • The process of obtaining information increases the entropy of the universe

  13. Maxwell’s Demon • If hot and cold are due to the relative numbers of fast and slow moving particles, what if you could sort them? • Could transfer heat from cold to hot • But demon needs to get information about the molecules which raises entropy

More Related