150 likes | 308 Views
Lecture 26: Multiprocessors. Today’s topics: Shared memory vs message-passing Simultaneous multi-threading (SMT) GPUs. Shared-Memory Vs. Message-Passing. Shared-memory: Well-understood programming model Communication is implicit and hardware handles protection
E N D
Lecture 26: Multiprocessors • Today’s topics: • Shared memory vs message-passing • Simultaneous multi-threading (SMT) • GPUs
Shared-Memory Vs. Message-Passing Shared-memory: • Well-understood programming model • Communication is implicit and hardware handles protection • Hardware-controlled caching Message-passing: • No cache coherence simpler hardware • Explicit communication easier for the programmer to restructure code • Software-controlled caching • Sender can initiate data transfer
Ocean Kernel . Procedure Solve(A) begin diff = done = 0; while (!done) do diff = 0; for i 1 to n do for j 1 to n do temp = A[i,j]; A[i,j] 0.2 * (A[i,j] + neighbors); diff += abs(A[i,j] – temp); end for end for if (diff < TOL) then done = 1; end while end procedure Row 1 . Row k Row 2k Row 3k …
Shared Address Space Model procedure Solve(A) int i, j, pid, done=0; float temp, mydiff=0; int mymin = 1 + (pid * n/procs); int mymax = mymin + n/nprocs -1; while (!done) do mydiff = diff = 0; BARRIER(bar1,nprocs); for i mymin to mymax for j 1 to n do … endfor endfor LOCK(diff_lock); diff += mydiff; UNLOCK(diff_lock); BARRIER (bar1, nprocs); if (diff < TOL) then done = 1; BARRIER (bar1, nprocs); endwhile int n, nprocs; float **A, diff; LOCKDEC(diff_lock); BARDEC(bar1); main() begin read(n); read(nprocs); A G_MALLOC(); initialize (A); CREATE (nprocs,Solve,A); WAIT_FOR_END (nprocs); end main
Message Passing Model main() read(n); read(nprocs); CREATE (nprocs-1, Solve); Solve(); WAIT_FOR_END (nprocs-1); procedure Solve() int i, j, pid, nn = n/nprocs, done=0; float temp, tempdiff, mydiff = 0; myA malloc(…) initialize(myA); while (!done) do mydiff = 0; if (pid != 0) SEND(&myA[1,0], n, pid-1, ROW); if (pid != nprocs-1) SEND(&myA[nn,0], n, pid+1, ROW); if (pid != 0) RECEIVE(&myA[0,0], n, pid-1, ROW); if (pid != nprocs-1) RECEIVE(&myA[nn+1,0], n, pid+1, ROW); for i 1 to nn do for j 1 to n do … endfor endfor if (pid != 0) SEND(mydiff, 1, 0, DIFF); RECEIVE(done, 1, 0, DONE); else for i 1 to nprocs-1 do RECEIVE(tempdiff, 1, *, DIFF); mydiff += tempdiff; endfor if (mydiff < TOL) done = 1; for i 1 to nprocs-1 do SEND(done, 1, I, DONE); endfor endif endwhile
Multithreading Within a Processor • Until now, we have executed multiple threads of an application on different processors – can multiple threads execute concurrently on the same processor? • Why is this desireable? • inexpensive – one CPU, no external interconnects • no remote or coherence misses (more capacity misses) • Why does this make sense? • most processors can’t find enough work – peak IPC is 6, average IPC is 1.5! • threads can share resources we can increase threads without a corresponding linear increase in area
How are Resources Shared? Each box represents an issue slot for a functional unit. Peak thruput is 4 IPC. Thread 1 Thread 2 Thread 3 Cycles Thread 4 Idle Superscalar Fine-Grained Multithreading Simultaneous Multithreading • Superscalar processor has high under-utilization – not enough work every cycle, especially when there is a cache miss • Fine-grained multithreading can only issue instructions from a single thread in a cycle – can not find max work every cycle, but cache misses can be tolerated • Simultaneous multithreading can issue instructions from any thread every cycle – has the highest probability of finding work for every issue slot
Performance Implications of SMT • Single thread performance is likely to go down (caches, branch predictors, registers, etc. are shared) – this effect can be mitigated by trying to prioritize one thread • With eight threads in a processor with many resources, SMT yields throughput improvements of roughly 2-4
SIMD Processors • Single instruction, multiple data • Such processors offer energy efficiency because a single instruction fetch can trigger many data operations • Such data parallelism may be useful for many image/sound and numerical applications
GPUs • Initially developed as graphics accelerators; now viewed as one of the densest compute engines available • Many on-going efforts to run non-graphics workloads on GPUs, i.e., use them as general-purpose GPUs or GPGPUs • C/C++ based programming platforms enable wider use of GPGPUs – CUDA from NVidia and OpenCL from an industry consortium • A heterogeneous system has a regular host CPU and a GPU that handles (say) CUDA code (they can both be on the same chip)
The GPU Architecture • SIMT – single instruction, multiple thread; a GPU has many SIMT cores • A large data-parallel operation is partitioned into many thread blocks (one per SIMT core); a thread block is partitioned into many warps (one warp running at a time in the SIMT core); a warp is partitioned across many in-order pipelines (each is called a SIMD lane) • A SIMT core can have multiple active warps at a time, i.e., the SIMT core stores the registers for each warp; warps can be context-switched at low cost; a warp scheduler keeps track of runnable warps and schedules a new warp if the currently running warp stalls
Architecture Features • Simple in-order pipelines that rely on thread-level parallelism to hide long latencies • Many registers (~1K) per in-order pipeline (lane) to support many active warps • When a branch is encountered, some of the lanes proceed along the “then” case depending on their data values; later, the other lanes evaluate the “else” case; a branch cuts the data-level parallelism by half (branch divergence) • When a load/store is encountered, the requests from all lanes are coalesced into a few 128B cache line requests; each request may return at a different time (mem divergence)
GPU Memory Hierarchy • Each SIMT core has a private L1 cache (shared by the warps on that core) • A large L2 is shared by all SIMT cores; each L2 bank services a subset of all addresses • Each L2 partition is connected to its own memory controller and memory channel • The GDDR5 memory system runs at higher frequencies, and uses chips with more banks, wide IO, and better power delivery networks • A portion of GDDR5 memory is private to the GPU and the rest is accessible to the host CPU (the GPU performs copies)
Title • Bullet