1 / 30

PROTEIN PHYSICS LECTURES 7-8 Basics of thermodynamics & kinetics

PROTEIN PHYSICS LECTURES 7-8 Basics of thermodynamics & kinetics. THERMODYNAMISC & STATISTICAL PHYSICS. WHAT IS “TEMPERATURE”? EXPERIMENTAL DEFINITION :. EXPERIMENTAL DEFINITION. = t, o C + 273.16 o. WHAT IS “TEMPERATURE”?. THEORY Closed system: energy E = const. S ~ ln[M].

hiero
Download Presentation

PROTEIN PHYSICS LECTURES 7-8 Basics of thermodynamics & kinetics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PROTEIN PHYSICS LECTURES 7-8 Basics of thermodynamics & kinetics

  2. THERMODYNAMISC & STATISTICAL PHYSICS

  3. WHAT IS “TEMPERATURE”? EXPERIMENTAL DEFINITION : EXPERIMENTAL DEFINITION = t,oC + 273.16o

  4. WHAT IS “TEMPERATURE”? THEORY Closed system: energy E = const S ~ln[M] CONSIDER: 1 state of “small part” with  & all states of thermostat with E-. M(E-) = 1•Mt(E-) St(E-) k •ln[Mt(E-)] St(E-)  St(E) - •(dSt/dE)|E Mt(E-)  exp[St(E)/k] • exp[-•(dSt/dE)|E/k]

  5. All-system’s states with E have equal probabilities For “small part’s” state: depends on e: COMPARE: Probability1(1) = Mt(E-1)/M(E) = exp[-1• (dSt/dE)|E/k] and Probability1(1) = exp(-1/kBT) (BOLTZMANN) One has: (dSt/dE)|E = 1/T k = kB ______________________________________________________________   -kBT, M  Mexp(1)  M2.72

  6. (dSth/dE) = 1/T P1(1) ~ exp(-1/kBT) Pj(j) = exp(-j/kBT)/Z(T); j Pj(j)  1 Z(T) = i exp(-i/kBT) partition function СТАТИСТИЧЕСКАЯ СУММА

  7. Along tangent: S-S(E1)= (E-E1)/T1 i.e.,F = E - T1S= const (= F1 = E1 - T1S1) stable Unstable (explodes, v → inf.) Unstable (falls)  unstable 

  8. Separation of potential energy in classic (non-quantum) mechanics: P() ~ exp(-/kBT) Classic:=COORD+ KIN KIN= mv2/2 : does not depend on coordinates Potential energy COORD: depends only on coordinates P() ~ exp(-COORD/kBT) • exp(-KIN/kBT) Z(T) = ZCOORD(T)•ZKIN(T)  F(T) = FCOORD(T)+FKIN(T) ======================================================================================================================== Elementary volume: (mv)x = ħ  (x)3 =(ħ/|mv|)3

  9. IN THERMAL EQUILIBRIUM: TCOORD=TKIN=T We may consider further only potential energy: EECOORD MMCOORD S(E)SCOORD(ECOORD ) F(E)FCOORD , etc.

  10. TRANSITIONS: THERMODYNAMICS

  11. gradual transition “all-or-none” (or 1st order) phase transition coexistence coexistence & jump-like transition E-T*S=0 Transition: |F1|= |-ST| ~ kT* (E/kT*)(T/T*)~1

  12. Second order phase transition change Recently observed in proteins; they are rare

  13. LANDAU: Helix-coil transition: Melting: NOT 1-s order phase transition 1-s order phase transition N N n n Helix & coil: 1D objects Ice & water: 3D objects Fhelix_n = Const + nf FICE_n = Cn2/3 + nf 1D interface 3D interface Mid-transition: f = 0 Shelix_n ~ ln(N) positions SICE_n ~ ln(N) N : very large; n ~ N, <<1 (~0.001) Const << ln(N) 2/3N2/3 >> ln(N) phases mix phases do not mix rule of contraries

  14. TRANSITIONS: KINETICS

  15. n#=nexp(-F#/kBT) Not “slowly goes”, but climbs, falls and climbs again… # n# falls n  TRANSITION TIME: t01 = t0#1 = = # (n/n#)=#exp(+F#/kBT)

  16. PARALLEL REACTIONS: TRANSITION RATE = SUM OF RATES(or: the highest rate) RATE = 1/ TIME 1/TIME = (1/#)  exp(-F1#/kBT) + (1/#)  exp(-F2#/kBT)

  17. # # _ CONSECUTIVE REACTIONS: TRANSITION TIME  SUM OF TIMES (or: the highest time) start finish t0… finish = t0#1 finish + t0#2 finish + … TIME = #exp(+F1#/kBT) + #exp(+F2#/kBT) + …

  18. #main main# _ _ “trap”: on “trap”: out start start finish finish TRANSITION TIME IS ESSENTIALLY EQUAL FOR “TRAPS” AT AND OUT OF PATHWAYS OF CONSECUTIVE REACTIONS: TRANSITION TIME  SUM OF TIMES (or: the longest time)

  19. DIFFUSION: KINETICS

  20. Mean kinetic energy of a particle:mv2/2 ~ kBT<> = j Pj(j) j v2 = (vX2)+(vY2)+(vZ2)Maxwell: in 3D

  21. Friction stops a molecule within picoseconds: m(dv/dt) = -(3D)v [Stokes law] D – diameter; m ~ D3  1g/cm3 – mass;  – viscosity tkinet 10-13 sec  (D/nm)2in water During tkinet the molecule moves somewhere by Lkinet ~ v•tkinet Then it restores its kinetic energy mv2/2 ~ kBT from thermal kicks of other molecules, and moves in another random side CHARACTERISTIC DIFFUSION TIME: nanoseconds

  22. Friction stops a molecule within picoseconds: tkinet 10-13 sec  (D/nm)2in water DIFFUSION: During tkinet the molecule moves somewhere by Lkinet ~v•tkinet Then it restores its kinetic energy mv2/2 ~ kBT from thermal kicks of other molecules, and moves in another random side CHARACTERISTIC DIFFUSION TIME: nanoseconds The random walk allows the molecule to diffuse at distance D (~ its diameter) within ~(D/L kinet)2steps, i.e., within tdifft tkinet•(D/Lkinet)2 4•10-10 sec  (D/nm)3in water

  23. For “small part”: Pj(j) = exp(-j/kBT)/Z(T); Z(T) = j exp(-j/kBT) j Pj(j) = 1 E(T) = <> = j j Pj(j) if allj =: #STATES = 1/P, i.e.: S(T) = kBln(1/P) S(T) = kB<ln(#STATES)>= kBj ln[1/Pj(j)]Pj(j) F(T) = E(T) - TS(T) = -kBT  ln[Z(T)] STATISTICAL MECHANICS

  24. Thermostat: Tth = dEth/dSth “Small part”: Pj(j,Tth) ~ exp(-j/kBTth); E(Tth) = j jPj(j,Tth) S(Tth) = kBj ln[1/Pj(j,Tth)]Pj(j,Tth) Tsmall_part = dE(Tth)/dS(Tth) = Tth STATISTICAL MECHANICS

  25. Along tangent: S-S(E1)= (E-E1)/T1 i.e., F = E - T1S= const (= F1 = E1 - T1S1)

  26. Separation of potential energy in classic (non-quantum) mechanics: P() ~ exp(-/kBT) Classic:=COORD+ KIN KIN= mv2/2 : does not depend on coordinates Potential energy COORD: depends only on coordinates P() ~ exp(-COORD/kBT) • exp(-KIN/kBT) ZKIN(T) =K exp(-K/kBT): don’t depend on coord. ZCOORD(T) =Cexp(-C/kBT): depends on coord. Z(T) = ZCOORD(T)•ZKIN(T)  F(T) = FCOORD(T)+FKIN(T) ======================================================================================================================== Elementary volume: (mv)x = ħ  (x)3 =(ħ/|mv|)3

  27. P(KIN+COORD) ~ exp(-COORD/kBT)•exp(-KIN/kBT) P(COORD) = exp(-COORD/kBT) / ZCOORD(T) ZCOORD(T) =Cexp(-C/kBT): depends ONLY on coordinates P(KIN) = exp(-KIN/kBT) / ZKIN(T) ZKIN(T) =K exp(-K/kBT): don’t depend on coord. T<0: unstable (explodes) <KIN>   at T<0 due to P(KIN) ~ exp(-KIN/kBT)

  28. “all-or-none” (or first order) phase transition F(T1) ________________

More Related