860 likes | 880 Views
Explore the evolution of computational fabrics, ASIC vs. FPGA, reconfigurable logic, and field programmable gate arrays (FPGAs). Learn about FPGA architecture, applications, and major vendors in the FPGA market.
E N D
COE 405 Programmable Logic and Storage Devices Dr. Aiman H. El-Maleh Computer Engineering Department King Fahd University of Petroleum & Minerals
Outline • History of Computational Fabrics • ASIC vs. FPGA • Reconfigurable Logic • Anti-Fuse-Based Approach (Actel) • RAM Based Field Programmable Logic (Xilinx) • CLBs • Carry & Control Logic • FPGA Memory Implementation
History of Computational Fabrics • Discrete devices: relays, transistors (1940s-50s) • Discrete logic gates (1950s-60s) • Integrated circuits (1960s-70s) • e.g. TTL packages: Data Book for 100’s of different parts • Gate Arrays (IBM 1970s) • Transistors are pre-placed on the chip & Place and Route software puts the chip together automatically – only program the interconnect (mask programming) • Software Based Schemes (1970’s- present) • Run instructions on a general purpose core
History of Computational Fabrics • ASIC Design (1980’s to present) • Turn Verilog directly into layout using a library of standard cells • Effective for high-volume and efficient use of silicon area • Programmable Logic (1980’s to present) • A chip that is reprogrammed after it has been fabricated • Examples: PALs, PLAs, EPROM, EEPROM, PLDs, FPGAs • Excellent support for mapping from Verilog
What is an FPGA? • A filed programmable gate array (FPGA) is a reprogrammable silicon chip. • Using prebuilt logic blocks and programmable routing resources, you can configure these chips to implement custom hardware functionality without ever having to pick up a breadboard or soldering iron. • You develop digital computing tasks in software and compile them down to a configuration file or bitstream that contains information on how the components should be wired together.
ASIC vs. FPGA FPGA FieldProgrammable GateArray ASIC ApplicationSpecific IntegratedCircuit • bought off the shelf • and reconfigured by • designers themselves • designs must be sent • for expensive and time • consuming fabrication • in semiconductor foundry • no physical layout design; • design ends with • a bitstream used • to configure a device • designed all the way • from behavioral description • to physical layout
ASIC vs. FPGA ASICs FPGAs Off-the-shelf High performance Low development cost Low power Short time to market Low cost in high volumes Reconfigurability
Other FPGA Advantages • Manufacturing cycle for ASIC is very costly, lengthy and engages lots of manpower • Mistakes not detected at design time have large impact on development time and cost • FPGAs are perfect for rapid prototyping of digital circuits • Easy upgrades like in case of software • FPGA provide a flexible platform for implementing digital computing • A rich set of macros and I/Os supported (multipliers, block RAMS, ROMS, high-speed I/O) • A wide range of applications from prototyping (to validate a design before ASIC mapping) to high performance spatial computing
How are FPGAs Used? • Prototyping • Ensemble of gate arrays used to emulate a circuit to be manufactured • Get more/better/faster debugging done than with simulation • Reconfigurable hardware • One hardware block used to implement more than one function • Special-purpose computation engines • Hardware dedicated to solving one problem (or class of problems) • Accelerators attached to general-purpose computers (e.g., in a cell phone!)
Major FPGA Vendors SRAM-based FPGAs • Xilinx, Inc. • Altera Corp. • Atmel • Lattice Semiconductor Flash & antifuse FPGAs • Actel Corp. • Quick Logic Corp. Share over 60% of the market
Actel Logic Module Example Gate Mapping Combinational Block S-R Latch
Xilinx FPGA Families • Old families • XC3000, XC4000, XC5200 • Old 0.5µm, 0.35µm and 0.25µm technology. Not recommended for modern designs. • High-performance families • Virtex (0.22µm) • Virtex-E, Virtex-EM (0.18µm) • Virtex-II, Virtex-II PRO (0.13µm) • Virtex-4 (0.09µm) • Low Cost Family • Spartan/XL – derived from XC4000 • Spartan-II – derived from Virtex • Spartan-IIE – derived from Virtex-E • Spartan-3
Two 4-input Functions, Registered Output and a Two Input Function
LUT Mapping • N-LUT direct implementation of a truth table: any function of n-inputs. • N-LUT requires 2N storage elements (latches) • N-inputs select one latch location (like a memory)
IOB Functionality • IOB provides interface between the package pins and CLBs • Each IOB can work as uni- or bi-directional I/O • Outputs can be forced into High Impedance • Inputs and outputs can be registered • advised for high-performance I/O • Inputs can be delayed
CLB Slice Structure • Each slice contains two sets of the following: • Four-input LUT • Any 4-input logic function, • or 16-bit x 1 sync RAM • or 16-bit shift register • Carry & Control • Fast arithmetic logic • Multiplier logic • Multiplexer logic • Storage element • Latch or flip-flop • Set and reset • True or inverted inputs • Sync. or async. control
Xilinx Multipurpose LUT (MLUT) 16 x 1 ROM (logic)
5-Input Functions implemented using two LUTs • One CLB Slice can implements any function of 5 inputs • Logic function is partitioned between two LUTs • F5 multiplexer selects LUT
Distributed RAM • CLB LUT configurable as Distributed RAM • A LUT equals 16x1 RAM • Implements Single and Dual-Ports • Cascade LUTs to increase RAM size • Synchronous write • Synchronous/Asynchronous read • Accompanying flip-flops used for synchronous read • Two LUTs can make • 32 x 1 single-port RAM • 16 x 2 single-port RAM • 16 x 1 dual-port RAM
Shift Register • Each LUT can be configured as shift register • Serial in, serial out • Dynamically addressable delay up to 16 cycles • For programmable pipeline • Cascade for greater cycle delays • Use CLB flip-flops to add depth
Shift Register • Register-rich FPGA • Allows for addition of pipeline stages to increase throughput • Data paths must be balanced to keep desired functionality
Fast Carry Logic • Each CLB contains separate logic and routing for the fast generation of sum & carry signals • Increases efficiency and performance of adders, subtractors, accumulators, comparators, and counters • Carry logic is independent of normal logic and routing resources • All major synthesis tools can infer carry logic for arithmetic functions
New 18 x 18 Embedded Multiplier • Embedded 18-bit x 18-bit multiplier • 2’s complement signed operation • Multipliers are organized in columns • Fast arithmetic functions • Optimized to implement multiply / accumulate modules
Design Flow - Mapping • Technology Mapping: Schematic/HDL to Physical Logic units • Compile functions into basic LUT-based groups (function of target architecture)
Design Flow – Placement & Route • Placement – assign logic location on a particular device • Routing – iterative process to connect CLB inputs/outputs and IOBs. Optimizes critical path delay – can take hours or days for large, dense designs Challenge! Cannot use full chip for reasonable speeds (wires are not ideal). Typically no more than 50% utilization.
FPGA Memory Implementation • Regular registers in logic blocks • Piggy use of resources, but convenient & fast if small • [Xilinx Vertex II] use the LUTs: • Single port: 16x(1,2,4,8), 32x(1,2,4,8), 64x(1,2), 128x1 • Dual port (1 R/W, 1R): 16x1, 32x1, 64x1 • Can fake extra read ports by cloning memory: all clones are written with the same addr/data, but each clone can have a different read address • [Xilinx Vertex II] use block ram: • 18K bits: 16Kx1, 8Kx2, 4Kx4 • with parity: 2Kx(8+1), 1Kx(16+2), 512x(32+4) • Single or dual port • Pipelined (clocked) operations