1 / 49

Monoculture and Diversity

Nora Sovarel and Joel Winstead 21 September 2004. Monoculture and Diversity. What is monoculture?. “the cultivation or growth of a single crop or organism especially on agricultural or forest land” Merriam-Webster Online. Monoculture in Biology. The Irish Potato Famine, 1845-1850

hija
Download Presentation

Monoculture and Diversity

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Nora Sovarel and Joel Winstead 21 September 2004 Monoculture and Diversity Monoculture and Diversity

  2. What is monoculture? “the cultivation or growth of a single crop or organism especially on agricultural or forest land” Merriam-Webster Online Monoculture and Diversity

  3. Monoculture in Biology The Irish Potato Famine, 1845-1850 • About half of Ireland’s population depended on the potato crop • The fungus Phytophthora infestans appeared in Ireland in 1845 • Every potato farm in Ireland was vulnerable • Consequences for Ireland: • 1 million people died • 1-2 million emigrated Monoculture and Diversity

  4. What about computing? Most statistics agree that Microsoft has at least 90% of the OS market. For example: thecounter.com: • Win XP 56% • Win 98 20% • Win 2000 15% • Win NT 1% • Win 95 + Win 3x less than 1% • http://www.thecounter.com/stats/2004/August/os.php Monoculture and Diversity

  5. Monocultures in Computing • Operating Systems – 90% Microsoft • Browsers – IE, Opera, Netscape • Web Servers – Apache, IIS • Routers – 85% Cisco • Processors – x86, Sparc Monoculture and Diversity

  6. Why are we in this situation? • Users – single interface • System Administrators - uniform software configurations • Software Companies • Lower distribution and maintenance costs • Compatibility and file formats Monoculture and Diversity

  7. What are the consequences? • Same vulnerabilities for everyone • One worm/virus for majority of systems • Virus writers also like economy of scale: • “write once, exploit everywhere” Monoculture and Diversity

  8. What can we do ? • opposite of monoculture • diversity • more than one Monoculture and Diversity

  9. Diversity as a defense If we’re not all running exactly the same code: • A single attack cannot compromise everybody • epidemic attacks cease to scale • An attacker won’t know what specific attack to use against a particular target • targeted attacks become more expensive Monoculture and Diversity

  10. How many? Are 10 variants of each piece of software and hardware enough? • normal operations disrupted with only a small fraction of computers attacked • Witty worm • applications show same vulnerabilities across OS's Monoculture and Diversity

  11. We need more.... • We need every system to look different to the attacker • We need all systems to look exactly the same to the users and administrators • We need to be able to deploy and patch systems quickly and economically Monoculture and Diversity

  12. Can we have the benefits without the disadvantages? • Same user interface • Different vulnerabilities • Can the right kind of diversity be generated automatically, without side-effects? Monoculture and Diversity

  13. Roadmap • Threat Model • Classes of attacks • Diversity defences: • Address space randomization • Pointer randomization • Instruction set randomization • Keyed hash functions • Effectiveness of these defences Monoculture and Diversity

  14. Threat Model • Threat: automated, destructive worms • Require quick, automated, remote infection • “Write-once, exploit everywhere” • Assume attacker knows code, but not key material • We are not: • defending against local attackers • defending against expensive brute-force attacks • defending against targeted attacks • Goal: make cost of automated infection high • Crashing program is better than spreading worm Monoculture and Diversity

  15. Classes of Attacks • Code injection attacks • Existing code attacks • Algorithmic complexity attacks Monoculture and Diversity

  16. Code Injection Attacks • Stack Smashing Attack • SQL Code Injection • Perl Code Injection • Double Pointer Attacks Monoculture and Diversity

  17. Stack Smashing return addr main(int argc, char *argv[]) { ... foo(a,b,c); ... if (everything_is_kosher) { exec(“/bin/sh”); } } void foo(int a,int b,int c) { char buf[100]; ... gets(buf); ... } argc argv a b c return addr buf[ ] Monoculture and Diversity

  18. Stack Smashing return addr main(int argc, char *argv[]) { ... foo(a,b,c); ... if (everything_is_kosher) { exec(“/bin/sh”); } } void foo(int a,int b,int c) { char buf[100]; ... gets(buf); ... } argc argv a malicious payload b c return addr buf[ ] Monoculture and Diversity

  19. Stack Smashing return addr • Payload overwrites return address • New address can point to injected code or existing code • The payload can also overwrite local variables • Pointers to code can also occur in other places • virtual functions, callbacks • Runtime type information on the heap can also be overwritten See “Smashing the Stack for Fun and Profit” in Phrack #49 for more argc argv a return addr malicious code b c return addr buf[ ] Monoculture and Diversity

  20. Existing Code Attacks • Format String Attack • Data Modification Attack • Integer Overflow • return-to-libc attacks Monoculture and Diversity

  21. Why do these attacks work? • The way code, stack, and data are laid out in memory is fairly predictable Monoculture and Diversity

  22. Why do these attacks work? • The way code, stack, and data are laid out in memory is fairly predictable: Shared Libraries Stack Heap Code Monoculture and Diversity

  23. Defence Through Diversity • Solution: randomise layout of address space: Shared Libraries Shared Libraries Stack Stack Heap Heap Code Code Monoculture and Diversity

  24. What does this buy us? • This can be done at link time • low overhead • Attacker must know or guess what address to jump to • The starting addresses of code, stack, heap, and library segments add some entropy • On a 32-bit system, about 16 bits for each segment • Is this enough? Monoculture and Diversity

  25. Attacking Address Space Randomization • Attacker needs address of only one function to make successful attack • Information leaks can reveal this • format string vulnerability • 16 bits can be brute-forced • Shacham et al. show how to do this in 216 seconds over a network Monoculture and Diversity

  26. Can we use a larger key? • Can’t get more than 20 bits without changing virtual memory system • We can add padding to stack and code • We can rearrange functions and data structures in memory • but this is tricky for shared libraries • But an attacker needs only one address to succeed • 64-bit address spaces may help Monoculture and Diversity

  27. Address Space Obfuscation and Randomization • start address • reorder • gaps • encryption Monoculture and Diversity

  28. Defenses - Stack • Canary Value • Write/Executable Pages • Padding • Local Variables Reordering • Parameter Reordering Monoculture and Diversity

  29. Defenses – Memory Layout Randomization • Base Address Randomization • stack • heap • text • DLL Monoculture and Diversity

  30. Defenses – Memory Layout Randomization • Reordering of static variables • Reordering of routines • Gaps in heap • Gaps between routines Monoculture and Diversity

  31. Pointer Encryption • Rearranging address spaces doesn’t give us a very large key • Can we have diversity not just in how memory is laid out, but in what pointers mean? • What if we encrypted all pointers in the program? • We could use a larger key • Attacker must guess key in order to overwrite a return address with something meaningful Monoculture and Diversity

  32. PointGuard • Developed by Cowan et al. at Immunix • All pointers stored in memory are encrypted • Pointers are decrypted immediately before dereference • Pointers are encrypted before storing in memory • An attacker must guess key in order to generate valid pointer to attack code Monoculture and Diversity

  33. PointGuard code transformation • Unlike address space transformations, requires compiler changes • Cleartext pointers appear only in registers • Registers are not vulnerable to modification • Encryption must be fast and efficient • We don’t want to encrypt non-pointer data, because that would mean encrypting the buffer containing the attacker’s pointer • Accessing libraries is tricky Monoculture and Diversity

  34. Effectiveness of PointGuard • Overhead is low • but requires recompilation • interaction with non-PG-aware code is tricky • Defends against most code injection and return-to-existing-code attacks • Does not defend against all data modification attacks • Information leaks may reveal ciphertext, allowing attacker to guess key Monoculture and Diversity

  35. What if code gets in anyway? • The previous techniques work by preventing an attacker from jumping to malicious code in the system • What if we didn’t think of every way that could happen? • Defense-in-depth: • make sure injected code won’t run no matter how control is transferred Monoculture and Diversity

  36. What must an attacker know? • An attacker must know how to write code to run on the targeted system • SPARC exploit code will not run on x86 • What if no two computers had the same instruction set? • It would be difficult or impossible to write exploit code that will run everywhere Monoculture and Diversity

  37. Instruction Set Randomization Kc, Keromytis, and Prevelakis: • Encrypt the program’s instructions with a different key for each copy of the program • Decrypt each instruction at runtime immediately before execution • Attacker must know key in order to write code that will decrypt to something meaningful • Unsuccessful attack will cause illegal instruction, address, or raise exception Monoculture and Diversity

  38. How many bits do we need? • Strong symmetric cryptography typically requires a 128-bit key or larger to resist known-plaintext attacks • Large performance penalty to decrypt • If we assume attacker doesn’t have our ciphertext, we can use much smaller key • 32-bit XOR may be good enough if our goal is to prevent large-scale automated worms Monoculture and Diversity

  39. Encoding schemes • XOR: • each word in legitimate code is XORed with the same key • Bit permutation: • The bits in each word are rearranged according to a key: • log2(32!) = 160 bits, for 32-bit word • Can move bits from one instruction to another • In practice, key size is smaller: • more than one way to encode an instruction • more than one harmful instruction Monoculture and Diversity

  40. Variable-sized instructions • x86 instructions vary in size • Some instructions are 1 byte • 8 bit key insufficient • Padding with NOPs has cost • generally requires source code • Solution 1: • Pad branch targets only • Solution 2: • Encrypt words, not instructions Monoculture and Diversity

  41. x86 Implementation • Authors modified Bochs x86 emulator to decrypt code at runtime • Encrypted image consisting of kernel and statically-linked binaries • Cost of emulation is high for CPU-bound processes • Not so bad for I/O bound processes • Reprogrammable processors could reduce overhead (TransMeta Crusoe) Monoculture and Diversity

  42. Interpreted Languages • Some code injection attacks use VBScript, SQL, Perl, or shell languages • Append key material to keywords: • e.g. foreach becomes foreach12345 • Overhead is negligible • The languages are interpreted anyway • Error messages may reveal key Monoculture and Diversity

  43. Libraries • Libraries present a problem: • Use different keys for applications and libraries • Use single key for all system libraries • Change the key from time to time • Or: • Statically link everything so that library code uses same key as application Monoculture and Diversity

  44. Other issues • Self-modifying code won’t run (Yes, gcc sometimes generates this) • Significant performance penalty • Attacker with ciphertext could brute-force the key offline • No defense against local attackers • May be okay for defense against worms • Does not resist existing code attacks • Does not resist data corruption attacks Monoculture and Diversity

  45. Algorithmic Complexity Attacks • The Linux networking code uses hash tables to classify packets • Hash tables, binary trees, and other data structures have good performance in average case • But poor performance in worst case • An attacker who knew the hash function could deliberately generate collisions • This can force worst-case behavior • This can cause denial of service Monoculture and Diversity

  46. Diversity as a Defense • Attacker can find collisions only if he knows hash function • What if every copy used a different hash function? • Solution: keyed hash functions • Every copy uses same code • Every copy uses a different key • Attacker cannot force collisions without key Monoculture and Diversity

  47. Effectiveness • The techniques presented are orthogonal • Other attacks: • integer overflow • data modification • Other threat models: • local attacker • determined remote attacker • denial of service Monoculture and Diversity

  48. Other approaches • StackGuard, StackShield, MemGuard, etc. • bounds checking, canaries, non-executable stack and heap • Safe library routines, wrappers • Sandboxes and safe languages (Java) • Static analysis to detect (or prove the absence of) buffer overflows Monoculture and Diversity

  49. Will this prevent catastrophic failures? 3. Things will be much like they are now: persistent threats, common annoyances, but people will still trust Internet for semi-critical tasks. 4. Technologies have emerged (and been successfully deployed) that make epidemic attacks a thing of the past. The Internet will be trusted for the most critical tasks. Do these techniques give us hope for (4)? Monoculture and Diversity

More Related