200 likes | 365 Views
EGU2011-2631. Radial vorticity constraint in the core flow modeling. Section 2.3 Earth’s Magnetic Field GFZ Potsdam, Germany. Seiki Asari & Vincent Lesur. Strong field?. A scenario of “fast torsional waves”. Gillet et al. 2010. Intensity of several mT?.
E N D
EGU2011-2631 Radial vorticity constraint in the core flow modeling Section 2.3 Earth’s Magnetic Field GFZ Potsdam, Germany Seiki Asari & Vincent Lesur EGU 2011 General Assembly, Vienna, Austria
Strong field? A scenario of “fast torsional waves” Gillet et al. 2010 Intensity of several mT? EGU 2011 General Assembly, Vienna, Austria
Radial vorticity equation near the CMB Leading order: Magnetostrophic balance Tangential geostrophy (TG) EGU 2011 General Assembly, Vienna, Austria
Approximation Approximation: Electrically Insulating mantle Mantle conductance: EGU 2011 General Assembly, Vienna, Austria
Radial vorticity constraint Rarial vorticity constraint (RVC) Nec. cond.: Historic obs. Suf. cond.: Satellite obs. EGU 2011 General Assembly, Vienna, Austria
Sorting core flow RVC TG flow class 1 RVC compatible flow class 2 RVC incompatible flow Ageostrophic flow class 3 EGU 2011 General Assembly, Vienna, Austria
2 3 Damping matrices Tangential geostrophy constraint class 2 + 3 Radial vorticity constraint • 2 3 class 3 EGU 2011 General Assembly, Vienna, Austria
Modeling settings • Magnetic model: GRIMM-2 • Period: 2000.0 - 2010.0 • Flow inversion: Spectral method • SH truncation: MF & SV 14 Flow 27 • Spline order: 6 EGU 2011 General Assembly, Vienna, Austria
0c 1c 1c 0c 1c 1c 0c 0c 1 1 1 1 1 1 2 2 Flow degree of freedom Toroidal flow Poloidal flow RVC TG … … t , t , t , t , s , s , s , s , EGU 2011 General Assembly, Vienna, Austria
Maps at 2005.0 TG RVC Nothing EGU 2011 General Assembly, Vienna, Austria
LOD predictions Obs. RVC TG EGU 2011 General Assembly, Vienna, Austria
Short-period torsional waves TG RVC Equator Pole EGU 2011 General Assembly, Vienna, Austria
Electric current density Thermodynamic upper limit • compatible with • “fast torsional waves” • greater than the previous • estimate in favor of TG and decadal torsional oscillations EGU 2011 General Assembly, Vienna, Austria
Additional constraints • Pure toroidal flow constraint • Helical flow constraint EGU 2011 General Assembly, Vienna, Austria
Solutions RVC + Pure toroidal flow RVC + Helical flow SV (though barely) SV EGU 2011 General Assembly, Vienna, Austria
Conclusioins • Radial vorticity constraint implemented in the core flow modeling • When compared with pure TG flow • Better fit to GRIMM-2 SV • Poloidal flow components having notably larger degree of freedom • LOD prediction correlated as well with the subdecadal LOD observation • Decadal torsional oscillations contradicted • Pure toroidal flow not compatible at the same time EGU 2011 General Assembly, Vienna, Austria
Trade-off Tangential geostrophy constraint Radial vorticity constraint 1+2+3 1+2+3 1 1 2+3 2+3 2 2 3 3 1TG flow 2+3Ageostrophic flow EGU 2011 General Assembly, Vienna, Austria
Spectral domain analysis Radial vorticity constraint Spherical harmonic expansion Toroidal & poloidal coefficients of Poloidal coefficients of EGU 2011 General Assembly, Vienna, Austria
Misfit TG RVC Misfit (Moderate-fit) GRIMM-2 SV Misfit (Tight-fit) Free decay Non-modeled SV EGU 2011 General Assembly, Vienna, Austria