340 likes | 521 Views
Geometric Phase Effects in Reaction Dynamics. Stuart C. Althorpe. Department of Chemistry University of Cambridge, UK. Quantum Reaction Dynamics. B. B. C. C. A. A. Born-Oppenheimer Approximation. B. B. C. C. A. A. ‘clamped nucleus’ electronic wave function. exact:.
E N D
Geometric Phase Effectsin Reaction Dynamics Stuart C. Althorpe Department of Chemistry University of Cambridge, UK
Quantum Reaction Dynamics B B C C A A
Born-Oppenheimer Approximation B B C C A A ‘clamped nucleus’electronic wave function exact: B.-O.: assume v. small Potential energy Nuclear dynamics S.E.
Reactive Scattering rearrangement B B C C A A scattering b.c. resonances A + BC AB + C 3 or 4 atom reactions propagator H + H2 H2 + H H + HX H2 + X H + H2O OH + H2
(Group) Born-Oppenheimer Approximation not small conicalintersection derivative coupling terms
Conical intersections ‘Non-crossing rule’ V1 X V0
‘Non-crossing rule’ ‘N − 2 rule’ N = 3 N = 2 N = 1 V1 V0
Geometric (Berry) Phase Herzberg & Longuet-Higgins (1963) — double-valued BC cut-line Aharanov-Bohm
∫ Ψ(x,t) =dx0 K(x,x0,t) Ψ(x0,0) K(x,x0,t) = ΣeiS/ħ path K(x,x0,t) = Ke(x,x0,t)+ Ko(x,x0,t) Ψ(x,t)= Ψe(x,t) + Ψo(x,t) n = −1 n = 0 Winding number of Feynman paths Schulman, Phys Rev 1969; Phys Rev D 1971; DeWitt, Phys Rev D 1971
∫ Ψ(x,t) =dx0 K(x,x0,t) Ψ(x0,0) K(x,x0,t) = ΣeiS/ħ − − path K(x,x0,t) = Ke(x,x0,t)+ Ko(x,x0,t) Ψ(x,t)= Ψe(x,t) + Ψo(x,t) n = -1 n = 0 repeat calculationwith and without cut-line Ψe(x,t) Ψo(x,t)
Bound-state BC Scattering BC cut-line
H + H2 HH + H HA + HBHC ‡ ‡ + Ψo Ψe HAHB + HC ‡ HAHC + HB
H + H2 HH + H ∞ Ψe q Ψo HA HBHC + differential cross section Internal coordinates Scattering angles
H + H2 HH + H Ψe Ψo HA HBHC + Scattering experiments Zare (Stanford), Yang (Dalian) Internal coordinates Scattering angles J.C. Juanes-Marcos, SCA, E. Wrede, Science 2005
0021 High collision energy 2.3 eV 3.0 eV ‡ ‡ Ψe DCS (Ǻ2Sr-1) 4.0 eV + Ψo 4.3 eV ‡ F. Bouakline, S.C. Althorpe and D. Peláez Ruiz, JCP(2008).
Conical intersections Domcke, Yarkony, Köppel (eds)Conical Intersections(World Scientific, New Jersey, 2003).
Ψo Ψe on two coupled surfaces? + Simply connected? Discontinuous paths?
Ψo + Ψe Ψ= Ψe+Ψo ~ very small Ψ= Ψe−Ψo Geometric phase
Ψo Ψe on two coupled surfaces? + ✓ Discontinuous paths?
Time-ordered product P. Pechukas, Phys Rev 1969 = ∑….∑∑ K(s,x;s0,x0|t) K(s,sN….s2,s1,s0;x,x0|t) SN S2 S1 S=1 x0 S=1 = x + S=0 S=0 n = 0 SCA, Stecher, Bouakline, J Chem Phys 2008
Ψo Ψe on two coupled surfaces? + ✓ ✓
Ψo Ψe on two coupled surfaces Ψe Ψo
Ψo Ψe +
Ψo Ψe +
S=1 S=0 P0/P1 1.93 1.25
Pyrrole H N 1B1(πσ*)-S0 Conical Intersection (surfaces of Vallet et al. JCP 2005) Negligible phase effects on population transfer
Conclusions GP effects small in reaction dynamics except possibly: • at low temperatures • in short-time quantum control experiments
Thanks for listening Dr Foudhil Bouakline Thomas Stecher