410 likes | 448 Views
Our Star, the Sun. Chapter Eighteen. The Sun’s energy is generated by thermonuclear reactions in its core. The energy released in a nuclear reaction corresponds to a slight reduction of mass according to Einstein’s equation E = mc 2
E N D
Our Star, the Sun Chapter Eighteen
The Sun’s energy is generated by thermonuclearreactions in its core • The energy released in a nuclear reaction corresponds to a slight reduction of mass according to Einstein’s equation E = mc2 • Thermonuclear fusion occurs only at very high temperatures; for example, hydrogen fusion occurs only at temperatures in excess of about 107 K • In the Sun, fusion occurs only in the dense, hot core
Energy Transfer • Conduction • Convection • (Electromagnetic) Radiation
A theoretical model of the Sun shows how energygets from its center to its surface • Hydrogen fusion takes place in a core extending from the Sun’s center to about 0.25 solar radius • The core is surrounded by a radiative zone extending to about 0.71 solar radius • In this zone, energy travels outward through radiative diffusion • The radiative zone is surrounded by a rather opaque convective zone of gas at relatively low temperature and pressure • In this zone, energy travels outward primarily through convection
Astronomers probe the solar interior usingthe Sun’s own vibrations • Helioseismology is the study of how the Sun vibrates • These vibrations have been used to infer pressures, densities, chemical compositions, and rotation rates within the Sun
Neutrinos reveal information about the Sun’score—and have surprises of their own • Neutrinos emitted in thermonuclear reactions in the Sun’s core have been detected, but in smaller numbers than expected • Recent neutrino experiments explain why this is so
The photosphere is the lowest of three main layersin the Sun’s atmosphere • The Sun’s atmosphere has three main layers: the photosphere, the chromosphere, and the corona • Everything below the solar atmosphere is called the solar interior • The visible surface of the Sun, the photosphere, is the lowest layer in the solar atmosphere
The spectrum of the photosphere is similar to that of a blackbody at a temperature of 5800 K
The chromosphere is characterized by spikesof rising gas • Above the photosphere is a layer of less dense but higher temperature gases called the chromosphere • Spicules extend upward from the photosphere into the chromosphere along the boundaries of supergranules
The outermost layer of the solar atmosphere, the corona, is made of very high-temperature gases at extremely low density • The solar corona blends into the solar wind at great distances from the Sun
Activity in the corona includes coronal mass ejections and coronal holes
Sunspots are produced by a 22-year cyclein the Sun’s magnetic field
The Sun’s surface features vary in an 11-year cycle • This is related to a 22-year cycle in which the surface magnetic field increases, decreases, and then increases again with the opposite polarity • The average number of sunspots increases and decreases in a regular cycle of approximately 11 years, with reversed magnetic polarities from one 11-year cycle to the next • Two such cycles make up the 22-year solar cycle
These changes are caused by convection and the Sun’s differential rotation
Solar Features • Plage: bright area in the chromosphere, arising from magnetic field compressing and heating chromospheric gases. Visible prior to sunspot formation. • Fillaments: dark streaks in chromosphere probably cooler and denser regions arising from magnetic fields pulling material along towards higher altitudes.
The magnetic-dynamo model suggests that many features of the solar cycle are due to changes in the Sun’s magnetic field
The Sun’s magnetic field also produces otherforms of solar activity • A solar flare is a brief eruption of hot, ionized gases from a sunspot group • A coronal mass ejection is a much larger eruption that involves immense amounts of gas from the corona