280 likes | 461 Views
H 2 O. QCD Phase Diagram. T. Hatsuda (Univ. Tokyo). Physics Today, Dec. vol.58 (2005). http://www.lsbu.ac.uk/water/phase.html. More on H 2 O. Outline of this talk. Possible phase structure in QCD – what we know and what we do not know Phases in hot QCD Phases in dense QCD
E N D
H2O QCD Phase Diagram T. Hatsuda (Univ. Tokyo)
Physics Today, Dec. vol.58 (2005) http://www.lsbu.ac.uk/water/phase.html More on H2O
Outline of this talk • Possible phase structure in QCD • – what we know and what we do not know • Phases in hot QCD • Phases in dense QCD • 4. Summary
QGP (quark-gluon plasma) cSB (chiral symmetry breaking) CSC (color superconductivity) Phases in QCD ? – a schematic picture -- ~170 MeV ~1 GeV
strong residual force • pre-formed pairs • Hatsuda & Kunihiro, • Phys.Rev.Lett. 55 (1985) • DeTar, PRD32 (1985) Asymptotic freedom + Debye screening deconfinement Collins & Perry, Phys.Rev.Lett. 34 (1975) QGP T cSB CSC mB & • quark - anti-quark pairing • chiral instability • Nambu & Jona-Lasinio, • Phys.Rev. 122 (1961) quark-quark pairing Cooper instability Bailin & Love, Phys.Rep.107 (1984) Origin of each “phase”
QGP Bi2Sr2CaCuO8+δ Highly undedoped cSB CSC 1. Competing order parameters 2. strong coupling effect pre-formed pairs in Tc < T < T* Tc = decoherence temp. T* = dissociation temp. underdoped optimally doped HTS – BEC – QCD connection ? • Babaev, PRD (’00) • Abuki, Itakura & Hatsuda, PRD (’02) • Kitazawa, Koide, Kunihiro & Nemoto, PRD (’02) • Chen, Stajic, Tan & Levin, Phys. Rep. (’05) Similarity with high Tc superconductivity
Lattice QCD Ginzburg-Landau + RG Nuclear theory Perturbative QCD effective models QGP cSB CSC Theoretical status
QGP cSB CSC Phases in hot QCD
SB limit Nf = 3 Nf = 2+1 Nf = 2 Karsch, Lect.Notes Phys. 583 (’02) 209 Tc = 173±10 MeV (Nf=2) = 154±10 MeV (Nf=3) Equation of State (m=0)
electric Quenched SU(3) 20×20×32×6 Lorenz gauge m/T 1/g2T 1/gT 1/T magnetic Nakamura, Saito & Sakai, Phys.Rev.D69 (’04) 014506 T/Tc Scale degeneracy near Tc
Viscous fluid R << 1 h/s Baym, Monien, Pethick & Ravenhall (’90) Arnold, Moore & Yaffe, (’03) pQCD Perfect fluid R >> 1 AdS/CFT Kovtun, Son & Starinets (’04) “Reynolds number” T/Tc 24x24x24x8 Nakamura & Sakai, Phys.Rev.Lett.94:072305,2005 updated: hep-lat/0510100 Viscosity (quenched QCD)
Asakawa & Hatsuda, PTP (’04) 5 J/ψ(3.1GeV) Umeda, Katayama, Miyamura & Matsufuru, Int.J.Mod.Phys.A16 (2001) 2215 (LQCD+MEM) 4 free r (GeV-1) 3 Asakawa & Hatsuda, PRL (’04), Datta et al., PRD (’04) T/Tc=1.53 ss mesons at T/Tc= 1.4 T/Tc=0.93 2 (LQCD+MEM) t (GeV-1) Pre-formed pairs (PFP) for Tc < T < T*?
weakly int. q+g plasma pQCD viscous fluid q+g plasma Strongly int. Q+G+PFP plasma LHC, RHIC Lattice QCD perfect fluid Resonance gas SPS Chiral dynamics viscous fluid Pion gas A modern “picture” of hot QCD
QGP cSB CSC Phases in dense QCD
flavor color Major differences from BCS High Tc superconductor Tc/eF ~ 0.1 Compact Cooper pair size ~ 1-10 fm 1. Highlyrelativistic Long range magnetic int. Son PRD59 (’99), Schafer & Wilczek, PRD60 (’99) Pisarski & Rischke, PRD61 (’00) • Color-flavor entanglement Variety of phases (such as ice and 3He) CFL, 2SC, dSC, uSC, etc Origin of Color Superconductivity (CSC)
u u u u d d d d s s s s CFL 2SC uSC dSC dSC cSB 2SC CFL uSC FFLO Phase structure relevant to compact starswith charge-neutrality & b-equilibrium nd > nu > ns 2SC :Bailin and Love, Phys. Rep. (’84) CFL :Alford, Rajagopal and Wilczek, NPB (’99) dSC :Iida, Matsuura, Tachibana and Hatsuda, PRL (’04) uSC :Ruster, Werth, Buballa, Shovkovy and Rischke, PRD (’05) FFLO, gapless phase, CSL, K-cond. etc
gluon dominance weak 1st order likely 1st order (strength unknown) Type I (κGL< 1) cSB Type II ? (κGL> 1) Thermal transition : CFL normal Ginzburg-Landau parameter :: CFL Case for muds=0
40K Ladder QCD at finite m Cond. of Fermionic-Atom Pairs BCS-like ξc/dq Abuki, Itakura & Hatsuda, PRD65 (’02) N0/N = 10% 5% 1% BEC-like μ(MeV) ξc dq 40K : JILA group, PRL 92 (2004) 040403 6Li : Innsbruck group, PRL 92 (2004) 120401 MIT group, PRL 92 (2004) 120403 BCS-BEC crossover ?
Most General Ginzburg-Landau Potential with the symmetry: + … QGP QGP CP-T Emergence of a high-density critical point (CP-D) CP Yamamoto, Tachibana, Baym & Hatsuda, hep-ph/0605018 cSB cSB CSC+cSB CP-D Hadron-quark continuity Schafer & Wilczek (’99) cSB+CSC CSC Chiral-super crossover due to axial anomaly See also, Kitazawa, Koide, Kunihiro & Nemoto, PTP108 (’02)
~ ・ Ginzburg-Landau Potential (3-flavor, chiral limit) Symmetry: Chiral modes: Diquark modes:
Yamamoto, Tachibana, Baym & Hatsuda, hep-ph/0605018 ・ Ginzburg-Landau Potential (3-flavor, chiral limit) = U(1)A breaking terms =
Hot QCD is strongly interacting: Tc < T* ? • Just like high Tc superconductor • BEC regime of systems of atomic fermions RHIC LATTICE AdS/CFT HTS/BEC Summary 2. Several critical points in (T,μ)-plane ? Chiral CP at high T, Chiral-super CP at high μ, Liquid-gas CP at low μ 3. Progress in spectral analysis on the lattice Heavy and light bound states above Tc Small viscosity even up to 30 Tc ? Full QCD study is started
QGP cSB CSC Lot more to be done ! ~170 MeV nuclear superfluidity p, K cond. ~1 GeV
1. What is quark-gluon plasma Part I. Basic Concept of Quark-Gluon Plasma: 2. Introduction to QCD 3. Physics of quark-hadron phase transition 4. Field theory at finite temperature 5. Lattice gauge approach to QCD phase transitions 6. Chiral phase transition 7. Hadronic states in hot environment Part II. QGP in Astrophysics: 8. QGP in the early universe 9. Compact stars Part III. QGP in Relativistic Heavy Ion Collisions: 10. Introduction to relativistic heavy ion collisions 11. Relativistic hydrodynamics for heavy ion collisions 12. Transport theory for pre-equilibrium process 13. Formation and evolution of QGP 14. Fundamentals of QGP diagnostics 15. Results from CERN-SPS experiments 16. First results from BNL-RHIC 17. Detectors in relativistic heavy ion experiments published, Dec., 2005 (Cambridge Univ. Press) http://utkhii.px.tsukuba.ac.jp/cupbook/index.html
Svetitsky & Yaffe, NPB210 (’82) Pisarski and Wilczek, PRD29 (’84) m s O(4) GL theory LGL LGL 1st 2nd Z(3) GL theory large cross over m u,d 1st SUL(3)xSUR(3) GL theory LGL small large small Order of the thermal transition (m=0)
u u preformed pair condensed pair d d PG 2SC PG cSB 2SC Phase structure relevant to heavy ion collisionsno charge-neutrality & b-equilibrium nd = nu , ns=0 2SC :Bailin and Love, Phys. Rep. (’84) PG :Kitazawa, Koide, Kunihiro and Nemoto, PRD (’04)
gluon dominance weak 1st order Critical end point Type I (κGL< 1) Type II (κGL> 1) Thermal transition : 2SC normal Ginzburg-Landau parameter :: cSB 2SC Case for ms=∞