720 likes | 727 Views
Chapter 4. Functional Anatomy of Prokaryotic. Prokaryotic Cells. Comparing Prokaryotic and Eukaryotic Cells Prokaryote comes from the Greek words for prenucleus. Eukaryote comes from the Greek words for true nucleus. Prokaryote Eukaryote. Paired chromosomes, in nuclear membrane Histones
E N D
Chapter 4 Functional Anatomy of Prokaryotic
Prokaryotic Cells • Comparing Prokaryotic and Eukaryotic Cells • Prokaryote comes from the Greek words for prenucleus. • Eukaryote comes from the Greek words for true nucleus.
Prokaryote Eukaryote • Paired chromosomes, in nuclear membrane • Histones • Organelles • Polysaccharide cell walls • Mitotic spindle • One circular chromosome, not in a membrane • No histones • No organelles • Peptidoglycan cell walls • Binary fission
Unusual shapes • Star-shaped Stella • Square Haloarcula Figure 4.5
Sterptococcus pneumoniae • Diplococci • Gram positive • Cause pneumonia disease
Staphylococcus aureus • Gram positive • Normal microbiota on skin • aureus = golden colony
Streptococcus pyogenes • Gram positive bacteria • Cocci • Cause strep throat , Tonsillitis and Impetigo
Bacillus anthracis • Gram positive • Spore forming • Bacilli • Cause Anthrax disease
Salmonella typhi • Gram negative • Bacilli • Flagellated • Cause typhoid fever
Clostridium botulinum • Gram positive • Bacilli • Spore forming • Cause Food borne botulism
Vibrio cholerae • Gram negative • Comma shaped • Flagellated • Cause cholera disease
Helicobacter pylori • Gram negative • Helix shaped • Cause gastric ulcer
Treponema pallidum • Helically coiled microorganism • Cause syphilis disease
Most bacteria are monomorphic • A few are pleomorphic
The shape of a bacterium is determined by heredity. • Genetically, most bacteria are monomorphic that is, they maintain a single shape. • However, a number of environmental conditions can alter that shape.
If the shape is altered, identification becomes difficult. • Some bacteria, such as Rhizobium and Corynebacterium are genetically pleomorphic, which means they can have many shapes, not just one.
Arrangements • Pairs: diplococci, diplobacilli • Clusters: staphylococci • Chains: streptococci, streptobacilli
Glycocalyx • Outside cell wall • Usually sticky • A capsule is neatly organized • A slime layer is unorganized & loose • Extracellular polysaccharide allows cell to attach • Capsules prevent phagocytosis Figure 4.6a, b
Flagella • Outside cell wall • Made of chains of flagellin • Attached to a protein hook • Anchored to the cell wall and cell membrane by the basal body Figure 4.8
Flagella Arrangement Figure 4.7
Motile Cells • Rotate flagella to run or tumble • Move toward or away from stimuli (taxis) • Flagella proteins are H antigens (e.g., E. coli O157:H7)
Motile Cells Figure 4.9
Axial Filaments • Endoflagella • In spirochetes • Anchored at one end of a cell • Rotation causes cell to move Figure 4.10a
Fimbriae and Pili • Fimbriae allow attachment • Pili are used to transfer DNA from one cell to another
Cell Wall • Prevents osmotic lysis • Made of peptidoglycan (in bacteria) Figure 4.6a, b
Peptidoglycan • Polymer of disaccharideN-acetylglucosamine (NAG) & N-acetylmuramic acid (NAM) • Linked by polypeptides Figure 4.13a
Gram-positive cell walls Gram-negative cell walls • Thick peptidoglycan • Teichoic acids • In acid-fast cells, contains mycolic acid • Thin peptidoglycan • No teichoic acids • Outer membrane
Gram-Positive cell walls • Teichoic acids: • Lipoteichoic acid links to plasma membrane • Wall teichoic acid links to peptidoglycan • May regulate movement of cations • Polysaccharides provide antigenic variation Figure 4.13b
Gram-Negative Outer Membrane • Lipopolysaccharides, lipoproteins, phospholipids. • Forms the periplasm between the outer membrane and the plasma membrane. • Protection from phagocytes, complement, antibiotics. • O polysaccharide antigen, e.g., E. coli O157:H7. • Lipid A is an endotoxin. • Porins (proteins) form channels through membrane
Gram-Negative Outer Membrane Figure 4.13c
Gram Stain Mechanism • Crystal violet-iodine crystals form in cell • Gram-positive • Alcohol dehydrates peptidoglycan • CV-I crystals do not leave • Gram-negative • Alcohol dissolves outer membrane and leaves holes in peptidoglycan • CV-I washes out
Atypical Cell Walls • Mycoplasmas • Lack cell walls • Sterols in plasma membrane • Archaea • Wall-less, or • Walls of pseudomurein (lack NAM and D amino acids)
Damage to Cell Walls • Lysozyme digests disaccharide in peptidoglycan. • Penicillin inhibits peptide bridges in peptidoglycan. • Protoplast is a wall-less cell( completely or partially removed). • Spheroplast is a cell from which the cell wall has been almost completely removed.
Damage to Cell Walls • L forms or cell wall deficient bacteria (CWD) are wall-less cells that swell into irregular shapes such as Mycoplasma . • Protoplasts and spheroplasts are susceptible to osmotic lysis.
Plasma Membrane Figure 4.14a
Plasma Membrane • Phospholipid bilayer • Peripheral proteins • Integral proteins • Transmembrane proteins Figure 4.14b
Fluid Mosaic Model • Membrane is as viscous as olive oil. • Proteins move to function • Phospholipids rotate and move laterally Figure 4.14b
Plasma Membrane • Selective permeability allows passage of some molecules • Enzymes for ATP production • Photosynthetic pigments on foldings called chromatophores or thylakoids
Plasma Membrane • Damage to the membrane by alcohols, quaternary ammonium (detergents) and polymyxin antibiotics causes leakage of cell contents.
Movement Across Membranes • Simple diffusion: Movement of a solute from an area of high concentration to an area of low concentration. • Facilitative diffusion: Solute combines with a transporter protein in the membrane.
Movement Across Membranes Figure 4.17
Movement Across Membranes • Osmosis • Movement of water across a selectively permeable membrane from an area of high water concentration to an area of lower water. • Osmotic pressure • The pressure needed to stop the movement of water across the membrane. Figure 4.18a