390 likes | 514 Views
Three Extremal Problems for Hyperbolically Convex Functions. Roger W. Barnard, Kent Pearce, G. Brock Williams Texas Tech University [Computational Methods and Function Theory 4 (2004) pp 97-109]. Notation & Definitions. Notation & Definitions. Notation & Definitions.
E N D
Three Extremal Problems for Hyperbolically Convex Functions Roger W. Barnard, Kent Pearce, G. Brock Williams Texas Tech University [Computational Methods and Function Theory 4 (2004) pp 97-109]
Notation & Definitions • Hyberbolic Geodesics
Notation & Definitions • Hyberbolic Geodesics • Hyberbolically Convex Set
Notation & Definitions • Hyberbolic Geodesics • Hyberbolically Convex Set • Hyberbolically Convex Function
Notation & Definitions • Hyberbolic Geodesics • Hyberbolically Convex Set • Hyberbolically Convex Function • Hyberbolic Polygon o Proper Sides
Problems • 1.
Problems • 1. • 2. Find
Problems • 1. • 2. Find • 3.
Theorem 2 Remark Minda & Ma observed that cannot be extremal for
Proof (Theorem 1) From the Calculus of Variations: