1 / 66

Biomolecule NMR Nuclear Magnetic Resonance

Biomolecule NMR Nuclear Magnetic Resonance. Eelectromotor. B. B 0. Magnetic moment of closed loop. Property of nucleus. charge. spin. Nucleus in magnetic. ?. B. Moment of force. F 2 F 1. ». X. r 2 » r 1. r 1. r 2. F1. F2. rotation. moment. X. J. Moment of momentum .

holden
Download Presentation

Biomolecule NMR Nuclear Magnetic Resonance

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Biomolecule NMRNuclear Magnetic Resonance

  2. Eelectromotor

  3. B B0 Magnetic moment of closed loop

  4. Property of nucleus charge spin

  5. Nucleus in magnetic ? B

  6. Moment of force F2F1 » X r2 » r1 r1 r2 F1 F2

  7. rotation moment

  8. X J Moment of momentum Angular momentum r m v

  9. 自旋 J 原 子 核 I自旋量子数 转动 宏观 自旋角动量

  10. 质子和中子的自旋量子数均为1/2 质子和中子的磁矩不相等,无法抵消 质子可看作带正电的电流环 中子可看作一正一负面积不等的两个电流环 核子的磁矩一般服从能量最小原理,同种核子的磁矩成对抵消

  11.  2v0 =ISn  n =Zev r2 m, Ze I

  12. 宏观 Spin Angular momentum B

  13. 常用核的天然丰度和旋磁比

  14. 带电粒子 =-BB=-mIhB 原子核 =BB=B cos

  15. Nucleus in magnetic

  16. B0 -1/2 b +1/2 a 无磁场 取向随机 外加磁场B0 磁矩沿磁场方向 (+1/2, a) 磁矩逆磁场方向 (-1/2,b) 自旋核(I=1/2)在磁场中的磁矩分量在磁场中存在两个MI(+1/2, -1/2)

  17. B0 =-BB0 1H, I=1/2 B0 =- mI·  · ħ·B0 μB =±1/2·  · ħ·B0 μB = ·mI·ћ θ (ΔmI=1) ΔE=ΔmI·ħB0

  18. E=1/2 (għB0) mI=-1/2 N S S E=- mI·  · ħ·B0 N B0 S N mI =1/2 Ea=-1/2 (għB0)

  19. hn E E= għB0 No magnetic field 共振吸收 Energy B0 Zeeman Energy Levels 1H, I=1/2 mI=-1/2, E=1/2 (għB0) b a mI =1/2 Ea=-1/2 (għB0) E=-mI ·ħ ·B0

  20. gB0 2 = Nuclear Magnetic Resonance E=-mI ·ħ ·B0 w=gB0 h=ΔE= ·ħ ·B0 核磁矩不为零的核在磁场中能级分裂,对高频辐射产生共振吸收的物理现象

  21. Nucleus precesses in an external magnetic field B0

  22. M M r mg X mg

  23. M= J dJ dt 动量矩定理  经典力学

  24. M= XB0 ⊙ B0

  25. Nucleus precesses in an external magnetic field B0 Larmor frequence: w=gB0  B0 precessing nucleus Joseph Larmor (1857-1942)

  26. 不同磁场B0 (T)下的共振频率(MHz) 不同原子核的 共振频率相差很大

  27. Nuclear Magnetic Resonance

  28. 为什么要提高外磁场强度?

  29. E E= għB0 No magnetic field Energy NMR信号与低能态原子核数的关系 mI=-1/2, E=1/2 (għB0) b a mI =1/2 Ea=-1/2 (għB0)

  30. M B0 沿磁场方向 低能态a 逆磁场方向 高能态b The population of the α- and β-states according to a Boltzmann distribution is almost equal (~10-4 difference) since the energies involved are fairly small. Nevertheless the small population difference produces an effective magnetization along the z-axis. z N低 〉N高 M总和H保持一致

  31. 共振吸收的能量分析 gB0 2 n = 射频RF的能量:E= hn 能级差: E= għB0 共振吸收: n= (g/2p)B0扫场 B0= n/ (g/2p) 扫频 Since Eis very small NMR is a rather insensitive spectroscopic method, and optimizing the signal-to-noise ratio is always a critical issue for NMR.

  32. NMR弛豫 relaxation 共振吸收后,低自旋减少,吸收渐弱,饱和时无吸收。 弛豫指通过非辐射跃迁,由高能态回到低能态的各种物理过程。以维持能态平衡 Spin-lattice relaxation Spin-spin relaxation

  33. NH4NO3 1950,W.G.Proctor &虞福春 ?

  34. H0 H’ 化学位移 理论上讲,同种原子核处于同样的磁场中能级裂分,接受射频时应该在同一位置发生共振。 不同基团中的同种核,因屏蔽不同,造成共振峰位不同,从而产生不同的化学位移 H=H0-sH0=(1-s)H0 s:屏蔽系数 w=g(H+H0)

  35. CH3 OH CH2 CH3-CH2-OH

  36. gB0 2 n = a. 参比-内标: 1,单峰 便于比较 2,屏蔽强高场强 3,化学惰性  不与样品反应 4,沸点低  有利于样品回收 1H: Tetramethy-silane, Si(CH3)4,TMS, 13C: CS2 ,TMS 19F: AcF3, CCl4 31P: 85% H3PO4

  37. b. 数值表示: (unit: ppm) ppm:parts per million CH3Br/TMS质子的化学位移 B0=1.4092T,TMS=60MHz, CH3=60MHz+162Hz d: 2.70 ppm B0 =2.3486T,TMS=100MHz, CH3=100MHz+270Hz : 2.70 ppm

  38. J耦合、自旋-自旋耦合 Spin-Spin Coupling

  39. CH3 CH2 低分辨 J 高分辨 不同的n和H引起主峰间距变化 自旋偶合:两个邻近的、"成键"的自旋对间具有自旋偶合,又称J偶合

  40. A B 谱线裂分规则(n+1)规则 A核:自旋量子数I B核将裂分为(2I+1)条谱线 如果有n个A核与B耦合,B将裂分为(2nI+1)条谱线. 对于(I=1/2)核,可简化为(n+1)规则 Examples: -CH: 2 x 1 x (1/2) + 1= 2

  41. Dihedral angle information from coupling constants Karplus: 3J=J0cos2+C (=0-90) 3J=J180cos2+C (=90-180) 3J=A+Bcos+Ccos2 (J180>J90)

  42. Dihedral angles in the protein backbone • J-couplings over 3 bonds are used in secondary structure assignment

  43. 研究蛋白质溶液构象 1, 通过COSY(TOCSY,DGFCOSY)等指 认出各氨基酸的氢峰,耦合系数并计 算相应的二面角。 2,测定一系列的NOESY谱,找出各对 空间距离小于0.5nm的核以 约束结构 3,基于上述数据进行几何结构的计算 以及能量优化

  44. Magnetic resonance imaging

  45. Brain haemorrhage cerebral haemorrhage

  46. Mansfield Application in clinic Lauterbur Nobel prizes (2003)

More Related