1 / 21

Experimental Comparison of Uncertainty Criteria for Active SLAM

Experimental Comparison of Uncertainty Criteria for Active SLAM. Henry Carrillo. Motivación. Preliminares. Experimentos. Primer experimento : acerca del calculo Segundo experimento : SLAM activo. Robot simulado ambiente interior : MRPT / C++

holland
Download Presentation

Experimental Comparison of Uncertainty Criteria for Active SLAM

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Experimental Comparison of Uncertainty Criteria forActive SLAM Henry Carrillo

  2. Motivación

  3. Preliminares

  4. Experimentos • Primer experimento : acerca del calculo • Segundo experimento : SLAM activo • Robot simulado ambiente interior : MRPT / C++ • Robot real ambiente interior : Pioneer 3 DX - ad-hoc • Robot real ambiente interior : DLR dataset • Robot real ambiente exterior : Victoria Park dataset • Robot simulado con horizonte unitario : MRPT / C++

  5. Primer experimento • Primer experimento : acerca del calculo • Es posible calcular D-opt en un robot realizando SLAM? • Ejecutamos un algoritmo de SLAM "secuencial" (e.g EKF-SLAM, iSAM) • Calculamos en cada paso : A-opt, E-opt , D-opt, det. de la covarianza, entropía e información mutua. • Robot simulado ambiente interior : MRPT / C++ • Robot real ambiente interior : Pioneer 3 DX - ad-hoc • Robot real ambiente interior : DLR dataset • Robot real ambiente exterior : Victoria Park dataset

  6. 1E - Robot simulado ambiente interior (I) Escenario: • Área de 25x25m • 2D EKF-SLAM • Sensor: Odometria+cámara(360 - 3m rango) • 180 landmarks - DA conocida • Errores Gaussianos: • Odometria + sensores

  7. 1E - Robot simulado ambiente interior (II) (a)-(f) A-opt, E-opt, D-opt, determinant, entropy and MI

  8. 1E-Robot en ambiente interior @ DLR (I) Escenario: • Oficina 60x40 m • 2D EKF-SLAM • Sensor: • Odometria + cámara BW • 576 landmarks– DA conocida

  9. 1E-Robot en ambiente interior @ DLR (II) (a)-(f) A-opt, E-opt, D-opt, determinant, entropy and MI

  10. 1E-Robot en ambiente exterior @ VP (I) Escenario: • Parque de 350 x 350 m • iSAM • Sensor: Odometria + Laser • xxx landmarks– DA conocida

  11. 1E-Robot en ambiente exterior @ VP (II) (a)-(f) A-opt, E-opt, D-opt, determinant, entropy and MI

  12. 1E-Robot en ambiente interior ad-hoc (I) Escenario: • Área de 25x25m • 2D EKF-SLAM • Sensor: Odometria+cámara • (360 - 3m rango) • 180 landmarks - DA conocida • Errores Gaussianos: • Odometria + sensores

  13. 1E-Robot en ambiente interior ad-hoc (II) (a)-(f) A-opt, E-opt, D-opt, determinant, entropy and MI

  14. Segundo experimento • Segundo experimento : SLAM activo • Que efecto tiene la métrica de incertidumbre en el SLAM activo? • SLAM activo == Horizonte unitario (greedy), discreto. • Métricas de incertidumbre == A-opt, D-opt y entropía. • Efecto == MSE y • Robot simulado con horizonte unitario : MRPT / C++

  15. 2E-Robot en ambiente interior ad-hoc (I) Escenario: • Área de 20x20m y 30x30m • 2D EKF-SLAM • Sensor: Odometria+cámara(360 - 3m rango) • Errores Gaussianos: Odometria+sensores • Planeador de caminos: Discreto (A*) y continuo (Atraccion-Repulsion)

  16. 2E-Robot en ambiente interior ad-hoc (II) • Resulting paths from each uncertainty metric: (a) D-opt, (b) A-opt and (c) Entropy. Each colour represents an executed path. The planning area was 20 x 20 m.

  17. 2E-Robot en ambiente interior ad-hoc (III) • Resulting trajectories for a 10000 steps active SLAM simulation. (a). Predefined trajectory and landmarks ground truth. (b). A-opt based active SLAM. (c). D-opt based active SLAM.

  18. 2E - Análisis cuantitativo 30x30 m • Evolution of the MSE ((a)-(c)) and 2 ((d)-(f)). Average of 10 MC.

  19. 2E - Análisis cuantitativo 20x20 m • Evolution of the MSE ((a)-(c)) and 2 ((d)-(f)). Average of 10 MC.

  20. Take home message

  21. Experimental Comparison of UncertaintyCriteriafor Active SLAM Gracias!!!

More Related