470 likes | 643 Views
2. Lecture No. 6. Prolog LanguageRule-based SystemsKnowledge representation using rulesRBS structureInference cycle of a RBSControl strategy. 2. 3. 1. Prolog. R. Kowalski, A. Colmerauer - '70 Prolog control structureA goal S is true in a Prolog program (can be satisfied or is a logical conseq
E N D
1. 1 Artificial Intelligence
University Politehnica of Bucharest
2008-2009
Adina Magda Florea
http://turing.cs.pub.ro/aifils_08
2. 2 Lecture No. 6 Prolog Language
Rule-based Systems
Knowledge representation using rules
RBS structure
Inference cycle of a RBS
Control strategy
3. 3 1. Prolog R. Kowalski, A. Colmerauer - '70
Prolog control structure
A goal S is true in a Prolog program (can be satisfied or is a logical consequence of the program) iff:
1. There is a clause C in the program;
2. There is an instance I of the clause C such that:
2.1. the head of I is the same with the head of S;
2.2 all the goals in I’s body has true (can be satisfied)
4. 4 Prolog
5. 5 Prolog % parinte(IndividX, IndividY)
% stramos(IndividX, IndividZ)
parinte(vali, gelu).
parinte(ada, gelu).
parinte(ada, mia).
parinte(gelu, lina).
parinte(gelu, misu).
parinte(misu, roco).
str1(X, Z) :- parinte(X, Z).
str1(X, Z) :- parinte(X, Y), str1(Y, Z).
6. 6 Prolog % Change the order of the rules:
str2(X, Z) :- parinte(X, Y), str2(Y, Z).
str2(X, Z) :- parinte(X, Z).
% Change the order of goals:
str3(X, Z) :- parinte(X, Z).
str3(X, Z) :- str3(X, Y), parinte(Y, Z).
% Change both the order of rules and the order of goals:
str4(X, Z) :- str4(X, Y), parinte(Y, Z).
str4(X, Z) :- parinte(X,Z).
7. 7 Prolog ?- str1(ada, misu).
yes
?- str2(ada, misu).
yes
?- str3(ada, misu).
yes
8. 8 Prolog ?- str4(ada, misu).
?- str3(mia, roco).
9. 9 2. Knowledge representation using rules Declarative representation / procedural representation
R1: if the patient has fever
and the type of the organism is gram-pozitiv
and the patient has a stiff neck
then the identity of the organism is streptococcus
R2: if the car does not start
and the lights do not turn on
then the battery is faulty
sau there is no contact of the battery
R3: if the temperature > 95o C
then open the protection valve
10. 10 Knowledge representation using rules
11. 3. Structure of an RBS
12. 12 4. Inference cycle of an RBS
Match
Selection
Execution
13. 13 Inference cycle of an RBS - cont Algorithm: Functioning of an RBS
1. WM ? Case data
2. repeat
2.1. Identify WM and KB and create the conflict set (CS)
2.2. Select a rule from the CS to apply
2.3. Apply selected rule
until there are no more applicable rules or
WM satisfies goal or
a predefined effort has been exhausted
end.
14. 14 5. Control strategy
Selection criteria from the CS
Direction of rule application
15. 15 5.1 Selection criteria from the CS Select the first applicable rule
Select a rule from the CS
Preferences based on rule identity
Specificity
- the set of premises of R1 includes the set of premises of R2;
- the set of conditions of R1 are similar to that of R2, but the premises of R1 refer to constants while the premises of R2 refer to variables.
Time of last use
Preferences based on matched objects
16. 16
17. 17 Selection criteria from the CS - cont Use of meta-rules
if a rule has conditions A and B and
the rule refers {does not refer} X
{ not at all/
only in the LHS/
only in the RHS }
then the rule will be certainly useful
{ probably useful/
probably useless/
certainly useless }
Application of all rules in the CS
18. 18 5.2 Direction of rule application Forward chaining Backward chaining
21. Algorithm: Find a value using forward chaining (a)
FindValueD(A)
1. if A has value
then return SUCCESS
2. Build CS
3. return Find(A, CS)
end.
Find(A, CS)
1. if CS = {}
then return FAIL
2. Choose a rule R?CS according to a selection criterion (criteria)
3. for each premise Ij of R execute
3.1. Find the truth of Ij
4. if all Ij , j=1,N are satisfied
then
4.1. if A has value
then return SUCCESS
4.2. Add the fact(s) refered in the RHS of R to WM
5. CS ? CS - R
6. return Find(A, CS)
end.
22. Algoritm: Find a value using backward chaining (b)
Detvalue(A)
1. Build the set if rules which refer A in RHS, CS
2. if CS = {}
then
2.1. Ask the user the value of A
2.2. if the user answers A
then stare this value in WM
else return FAIL
3. else
3.1. Choose a rule according to a selection criterion (criteria)
3.2. for each premise Ij, j=1,N, in LHS of R execute
3.2.1. Be Aj refered by the premise Ij
3.2.2. if Aj has value
then evaluate the truth of Ij
3.2.3. else
i. if Detvalue(Aj) = SUCCESS
then evaluate the truth of Ij
ii. else consider Ij unsatisfied
23. 3.3. if all premises Ij, j=1,N are satisfied
then store the value A obtained from the RHS of R in WM
4. if A has value (in WM)
then return SUCCESS
5. else
5.1 CS ? CS – R
5.2 repeat from 2
end.
1'. if A is primary data
then
1'.1. Ask the user the value of A
1'.2. if the user knows the value of A
then - store this value in WM
- return SUCCESS
1’.3. else return FAIL
24. Example of RBS with forward chaining (a)
R11: if Etapa is Verifica-Decor
and exists o statuie
and does not exist soclu
then Add soclu la Obiecte-Neimpachetate …..
R17: if Etapa is Verifica-Decor
then finish Etapa Verifica-Decor
and start Etapa Obiecte-Mari
25. Example of RBS with forward chaining - cont
R21: if Etapa is Obiecte-Mari
and exists un obiect mare de ambalat
and exists un obiect greu de ambalat
and exists o cutie cu mai putin de trei obiecte mari
then pune obiectul greu in cutie
R22: if Etapa is Obiecte-Mari
and exists un obiect mare de ambalat
and exists o cutie cu mai putin de trei obiecte mari …..
then pune obiectul mare in cutie
R28: if Etapa is Obiecte-Mari
and exists un obiect mare de pus
then foloseste o cutie noua
R29: if Etapa is Obiecte-Mari
then finish Etapa Obiecte-Mari
and start Etapa Obiecte-Medii
26. Example OPS5
WME
(literalize student name placed_in sex_stud)
(literalize room number capacity
free sex_room occupants)
(vector-attribute occupants)
room 111 4 2 F (Maria Elena) time tag
(make room ^number 112 ^capacity 4 ^free 4
^sex_cam nil ^occupants nil)
(make student ^name Mihai ^placed_in nil ^sex-stud M)
27. (p atrib_stud_free_room
(<Unplaced_student>
(student ^name < stud_name> ^plased_in nil ^sex_stud <gender>))
(<Free_room>
(room ^number <room_no>
^capacity <capacity_max>
^free <capacity_max>))
-->
(modify < Unplaced_student > ^ plased_in < room_no >)
(modify < Free_room > ^ occupants < stud_name >
^sex_room < gender >
^ free (compute < capacity_max >-1)).
28. 28 Example Jess (deftemplate person
(slot firstname)
(slot name)
(slot age (type INTEGER))
)
29. Stud/room in Jess (deftemplate student
(slot name)
(slot sex)
(slot placed_in)
(slot special_considerations (default no))
30. 30 5. RBS strategies in OPS5 family
Recognize-act cycle:
Match
Select
Act
WME = working memory element
Identified by a "time tag"
Instantiation: set of WME which satisfy a rule
Conflict set
Conflict resolution
31. 31 Recognize-act cycle Match
Application of rule – condition - WMEs of WM satisfy LHS
2 aspects:
match intra-element
match inter-element
(defrule teenager
(person (firstName ?name) (age ?age))
=> (printout t ?name " is " ?age " years old." crlf))
32. Recognize-act cycle match inter-element
(defrule assign-private-room
(student (name ?stud_name)
(placed_in nil)
(special_consideration yes))
(room (number ?room_no)
(capacity 1)
(vacancies 1)
=> …
33. 33 Conflict resolution Strategies
Refraction = o aceeasi instantiere nu este executata de mai multe ori (2 instantieri sunt la fel daca au acelasi nume de regula si aceleasi time tags, in aceeasi ordine)
Time of use = Se prefera instantierile care au identificat cu WMEs cu cele mai recente time tags (sau invers)
Specificity = Au prioritate instantierile cu LHS specifice = nr de valori testate in LHS
teste asupra: nume clasa, predicat cu 1 arg constanta, predicat cu un operator variabila legata
34. 34 Conflict resolution Strategia LEX
Elimina din MC instantierile care au fost deja executate
Ordoneaza instantierile pe baza momentului utilizarii
Daca mai multe instantieri au aceleasi time tags, utilizeaza specificitate
Daca mai multe instantieri au aceeasi specificitate alege arbitrar
Strategia MEA – aceeasi dar utilizeaza primul time tag
35. 35 Efficiency Match – cam 80% din timpul ciclului recunoastere-actiune
Fiecare WME este comparat cu fiecare conditie din fiecare regula
O(R*FP), R – nr de reguli, F – nr WME, P nr mediu de conditii in LHS regula
RETE match algorithm (1982 Forgy)
Salveaza starea de match intre 2 cicluri recunoastere-actiune
La crearea unui WME, acesta este comparat cu toate elementele conditie din program si este memorat impreuna cu fiecare element conditie cu care a identificat =>
Numai schimbarile incrementale din WM sunt identificate in fiecare ciclu
O(R*F*P) aprox
36. Rule compilation Se compileaza conditiile regulilor intr-o retea de noduri de test
Un test este un predicat cu o constanta sau variabila legata sau o disjunctie
Procesul de match are loc numai la adaugarea sau la eliminarea unui WME (modify este retract urmat de assert)
(gate (type or) (value true))
(gate (type or) (value false))
Node sharing
37. 37 Rule compilation Un pointer la noul WME este trecut prin retea, incepand de la nodul radacina
Fiecare nod actioneaza ca un switch
Cand un nod primeste un pointer la un WME, testeaza WME asociat. Daca testul reuseste, nodul se deschide si WME trece mai departe
Altfel nu se intampla nimic
Daca un WME va trece prin retea, va fi combinat cu alte WME care trec pentru a forma o instantiere in MC
Pointerii la WME sunt trimisi prin reteaua RETE ca tokens = pointer + stare (assert sau retract)
38. 38 Types of node in RETE network Nod cu 1 intrare = test intra-element
realizat de noduri cu 1 intrare
fiecare nod efectueaza un test corespunzator unei conditii
testarea aceleiasi variabile – tot noduri cu 1 intrare
39. 39 RBS Foarte multe
Cele mai influente
OPS5
ART
CLIPS
Jess
Familia Web Rule languages
In special RuleML si SWRL
Interoperabilitatea regulilor
40. 40 RuleML RuleML Initiative - August 2000 Pacific Rim International Conference on Artificial Intelligence.
RuleML Initiative dezvolta limbaje bazate pe reguli deschise XML/RDF
Aceasta permite schimbul de reguli intre diferite sisteme, inclusiv componete software distribuite pe Web si sisteme client-server eterogene
Limbajul RuleML – sintaxa XML pentru reprezentarea cunostintelor sub forma de reguli
Integrarea cu ontologii: sistemul de reguli trebuie sa deriveze/utilizeze cunostinte din ontologie
41. 41 RuleML RuleML – se bazeaza pe Datalog
Datalog = limbaj de interogare si reguli pentru baze de date deductive
Subset al Prolog cu restrictii:
argumente ne-functionale (constante sau variabile)
limitari in nivelul de apeluri recursive
variabilele din concluzie trebuie sa apara in predicate ne-negate din ipoteza
Hornlog – Datalog extins cu variabile functionale (termeni generali)
42. 42 RuleML Reguli reactive = Observa/verifica anumite evenimente/conditii si executa o actiune – numai forward
Constrangeri de integritate = reguli speciale care semnaleaza inconistente cand se indeplinesc anumite conditii – numai forward
Reguli de inferenta (derivare) = reguli reactive speciale cu actiuni care adauga o concluzie daca conditiile (premisele sunt adevarate) - Se pot aplica atat forward cat si backward
Fapte = reguli de inferenta particulare
43. RuleML Reguli reactive
<rule> <_body> <and> prem1 ... premN </and> </_body>
<_head> action </_head>
</rule>
Constrangeri de integritate
<ic> <_head> inconsistency </_head>
<_body> <and> prem1 ... premN </and> </_body>
</ic>
implementate ca
<rule> <_body> <and> prem1 ... premN </and> </_body>
<_head> <signal> inconsistency </signal> </_head>
</rule>
44. RuleML Reguli de inferenta/derivare
<imp> <_head> conc </_head>
<_body> <and> prem1 ... premN </and> </_body>
</imp >
implementate prin
<rule> <_body> <and> prem1 ... premN </and> </_body>
<_head> <assert> conc </assert> </_head>
</rule>
Fapte
<atom> <_head> conc </_head> </atom>
implementate prin
<imp> <_head> conc </_head>
<_body> <and> </and> </_body> </imp>
45. RuleML Fapte
46. Reguli de inferenta/derivare
47. Example of RBS with backward chaining (b)
R1: if X has par
then X is mamal
R2: if X feeds puii with milk
then X is mamal
R3: if X is mamal
and X has pointed teeth
and X has falci
then X is carnivor
R4: if X is carnivor
and X is brown
and X has pete
then X is cheetah
R5: if X is carnivor
and X is brown
and X has strips
then X is tiger