300 likes | 319 Views
Part 1: Two-dimensional electron gas in STO. K. Reich, M. Schecter, B.I. Shklovskii, University of Minnesota. Dielectric constant of STO. The origin LAO-STO 2DEG. J. Mannhart et al, MRS Bull. 33 1027 (2008 ). Thomas-Fermi accumulation layer. Landau Hamiltonian.
E N D
Part 1: Two-dimensional electron gas in STO K. Reich, M. Schecter, B.I. Shklovskii, University of Minnesota
The origin LAO-STO 2DEG J. Mannhart et al, MRS Bull. 33 1027 (2008)
TF-Linear results: Ya. I. Frenkel, Ioffe Institute, 1928
Experimental density profile of electrons n(x) (Y. Yamada, H. K. Sato, Y. Hikita, H. Y. Hwang, and Y. Kanemitsu, Applied Physics Letters 104, 151907 (2014)) obtained by time-resolved photoluminescence. Fitting with our theory is shown by the solid line: d = 250b = 9 nm.
Experimental density profile of electrons n(x) FIG. 2. Fitting by (x+d)^{-12/7} obtained by infrared ellipsometry in A. Dubroka, M. Rossle, K. W. Kim, V. K. Malik,L. Schultz, S. Thiel, C. W. Schneider, J. Mannhart, G. Herranz, O. Copie, M. Bibes, A. Barthelemy, and C. Bernhard, Phys. Rev. Lett. 104, 156807 (2010). The fitting parameter d =142b = 5 nm.
Part 2: Spherical charge in STO Han Fu, K. Reich, B.I. Shklovskii University of Minnesota.
Drawing on LAO/STO C. Cen, S. Thiel, G. Hammerl, C. W. Schneider, K. E. Andersen, C. S. Hellberg, J. Mannhart, and J. Levy, Nature Materials 7, 298 (2008)
Thomas-Fermi "atom" in STO κ = 20000 At Z > Zc , collapse happens!
Collapse of the "atom" and charge renormalization Electrons collapse to the center At large nuclear charge Z, the final net charge is renormalized to Z*
Known collapse phenomena I. Pomeranchuk and Y. Smorodinsky (1945) Y. B. Zeldovich and V. S. Popov (1972) E. B. Kolomeisky, J. P. Straley, and H. Zaidi, (2013) M. M. Fogler, D. S. Novikov, and B. I. Shklovskii, (2007), Levitov (2007), M. F. Crommie, (2012) Supercritical nucleus Z > 1/α = 137 α = e2/ћc Narrow-band gap semiconductors, Weyl semimetals, and graphene αeff= e2/ћvκ, ε=pv
Ek = pc ≈ ћc/r, U = -Ze2/r |U/Ek| = Zα, Z > 1/α → collapse happens, Relativistic origin A. B. Migdal, V. S. Popov, D. N. Voskresenskii (1977). E. B. Kolomeisky, J. P. Straley, H. Zaidi (2013). S Zn
As Z increases, collapse strengthens Degenerate gas Collapse and charge renormalizaton
Collapse and charge renormalization in STO at Z >> Z* S Zn Zc ≈R/a Z* ≈(R/a)9/7
Redistribution of electron density nonlinear linear uncollapsed aB Collapsed, Saturn-like
Double-layer structure Potential profile Fermi level Fermi sea Similar to supercharged nuclei border studied by A. B. Migdal, V. S. Popov, D. Voskresenskii (1977).
Thermal ionization at finite T s = kB ln (n / n0), n0=2 / λ3, λ ~ T-1/2, n=Zi N I = Zie2/κri = Zi2e2/κ2ab, ri=κab/Zi I=sT Zi > Z*at T > 8K, Inner tail ionized at T > 450 K Finite temperature
Temperature-induced metal-insulator crossover d T > 10 K T < 10 K