1 / 6

Diszjunkció-kiküszöbölés (  Elim)

„ Házasodj meg, meg fogod bánni; ne házasodj meg, azt is meg fogod bánni; házasodj vagy ne házasodj, mindkettőt meg fogod bánni; vagy megházasodsz, vagy nem, mindkettőt megbánod.  ” Kierkegaard Fitch formátumban: Vagy házasodj meg, vagy ne. Házasodj meg. Meg fogod bánni. Ne házasodj meg.

Download Presentation

Diszjunkció-kiküszöbölés (  Elim)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. „Házasodj meg, meg fogod bánni; ne házasodj meg, azt is meg fogod bánni; házasodj vagy ne házasodj, mindkettőt meg fogod bánni; vagy megházasodsz, vagy nem, mindkettőt megbánod. ” Kierkegaard Fitch formátumban: Vagy házasodj meg, vagy ne. Házasodj meg. Meg fogod bánni. Ne házasodj meg. Meg fogod bánni. (Mindenképpen) meg fogod bánni.

  2. Diszjunkció-kiküszöbölés ( Elim) Ha van egy “A  B” alakú mondatunk egy bizonyításban, és mind A-ból, mind B-ből le tudunk vezetni egy C mondatot (egy-egy részbizonyításban [subproof]), akkor a bizonyításunka t folytathatjuk C-vel. Azaz C-re három dologból következtetünk: az “A  B” premisszából, a premisszaként egyedülA-t tartalmazó és C-re végződő részbizonyításból és a B premisszájú, C-re végződő részbizonyításból. Nyilvánvalóan általánosítható többtagú esetre. Nem kell minden egyes tagból bizonyítani a konklúziót, elegendő részdiszjunkciókból. Próbáljuk ki: Disjunction 1, Disjunction 2. HF: 6.5, 6.6

  3. Indirekt bizonyítás („lehetetlenségre való visszavezetés” [Arisztotelész]) Tétel: a négyzet átlójának és oldalának nincsen közös mértéke, azaz az arányuk nem fejezhető ki két egész szám – p és q – hányadosaként. Tegyük fel, hogy a tétel nem igaz, azaz (A) Van olyan közös mérték, amelynek p-szerese az átló és q-szorosa az oldal. Feltehetjük, hogy p és q közül legfeljebb az egyik páros (egyszerűsítés). 2q2=p2 Püthagorasz tétele miatt. De akkor p páros, mert a négyzete páros. Ezért q páratlan. q2 = p2/2 Páros szám négyzete osztható néggyel, tehát p2/2 is páros. Tehát q2 páros. De akkor q maga is páros. Lehetetlenségre (ellentmondásra) jutottunk („a párosok a páratlanokkal egyenlőek lennének”). Ezért az A mondat hamis, A negációja, azaz a tétel pedig igaz. Q.e.d. Ebből a módszerből lesz a negáció bevezetési szabálya. A formalizáláshoz segédeszköz egy új konstans: , a lehetetlen mondat (vagy ellentmondás, vagy Falsum). Az A mondatból levezettünk egy ellentmondást, azaz -t, ezzel bizonyítottuk “A”-t.

  4. Negáció-bevezetés ( Intro) Ha van egy részbizonyításunk, amelynek P az egyetlen premisszája és -ra végződik, akkor a bizonyítást folytathatjuk “P”-vel. Negáció-kiküszöbölés ( Elim) Ha van egy “P” alakú mondatunk a bizonyításban, akkor folytathatjuk P-vel. Falsum-bevezetés ( Intro) S és “S” után -mal lehet folytatni. Bizonyítsuk be ezekkel a szabályokkal a kettős negáció elvének másik felét! (Negation1) Bizonyítsuk be az egyik De Morgan-szabály egyik felét:„(A  B)”-ből vezessük le „A  B”-t! A kettős negáció elvé(nek egyik fele)

  5. Új centrális logikai fogalom: ellentmondásosság Mondatok egy halmaza ellentmondásos, ha lehetetlen, hogy egyszerre igazak legyenek. Mondatok egy halmaza tt-ellentmondásos, ha akármilyen az atomi mondatok igazságértéke, nem lehet egyszerre mind igaz, azaz közös igazságtáblázatuknak nincs csupa-igaz sora. Másképp: tautologikusan következik belőle . FO-ellentmondásos/analitikusan ellentmondásos: ami nem lehet egyszerre igaz a logikai konstansok/az összes kifejezés jelentése miatt.

  6. Falsum-kiküszöbölés ( Elim) Ha a bizonyításban szerepel a  mondat, bármilyen mondattal folytatható. (Ex falso quodlibet sequitur.) Ismétlés (Reit) Egy bizonyításban bármelyik sort meg lehet ismételni. A  Elim szabály nélkülözhető. Fontos! Minden bizonyítás több bizonyításból álló struktúra (lehet), melyben egyes bizonyítások részei másoknak, ill. minden más bizonyítás része az egésznek. Ezt a relációt a függőleges vonalak mutatják: egy P bizonyítás részbizonyítása egy másik, Q bizonyításnak, ha a függőleges vonala Q vonala „mögött” (jobbra) van. Egy bizonyítás új lépésében felhasználhatjuk az eddigi lépéseink eredményét, beleértve azoknak a bizonyításoknak a lépéseit, amelyeknek a mi bizonyításunk része, de sohasem használhatjuk a saját részbizonyításainak, vagy más olyan részbizonyításoknak a lépéseit, melyeknek nem része. Próbáljuk ki: 6.18 HF: 6.19-20.

More Related