1 / 35

Synthesis

STAT 101 Dr. Kari Lock Morgan. Synthesis. Big Picture Essential Synthesis Review Speed Dating. Final. Monday, April 28th, 2 – 5pm No make-ups, no excuses 30 % of your course grade Cumulative from the entire course

hoshi
Download Presentation

Synthesis

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. STAT 101 Dr. Kari Lock Morgan Synthesis • Big Picture Essential Synthesis • Review • Speed Dating

  2. Final • Monday, April 28th, 2 – 5pm • No make-ups, no excuses • 30% of your course grade • Cumulative from the entire course • Open only to a calculator and 3 double-sided pages of notes prepared only by you

  3. Help Before Final • Wednesday, 4/23: • 3 – 4pm, Prof Morgan, Old Chem 216 • 4 – 9pm, Stat Ed Help, Old Chem 211A • Thursday, 4/24: • 5 – 7pm, Yating, Old Chem 211A • 4 – 9pm, Stat Ed Help, Old Chem 211A • Friday, 4/25: • 1 – 3pm, Prof Morgan, Old Chem 216 • 3 – 4 pm, REVIEW SESSION, room tbd • Sunday, 4/27: • 4 – 6pm, Tori, Old Chem 211A • 6 – 7pm, Stat Ed Help, Old Chem 211A • 7 – 9pm, David, Old Chem 211A • Monday, 4/28: • 12:30 – 1:30, Prof Morgan, Old Chem 216

  4. Review What is Bayes Rule? A way of getting from P(A if B) to P(B if A) A way of calculating P(A and B) A way of calculating P(A or B)

  5. Data Collection • The way the data are/were collected determines the scope of inference • For generalizing to the population: was it a random sample? Was there sampling bias? • For assessing causality: was it a randomized experiment? • Collecting good data is crucial to making good inferences based on the data

  6. Exploratory Data Analysis • Before doing inference, always explore your data with descriptive statistics • Always visualize your data! Visualize your variables and relationships between variables • Calculate summary statistics for variables and relationships between variables – these will be key for later inference • The type of visualization and summary statistics depends on whether the variable(s) are categorical or quantitative

  7. Estimation • For good estimation, provide not just a point estimate, but an interval estimatewhich takes into account the uncertainty of the statistic • Confidence intervals are designed to capture the true parameter for a specified proportion of all samples • A P% confidence interval can be created by • bootstrapping (sampling with replacement from the sample) and using the middle P% of bootstrap statistics

  8. Hypothesis Testing • A p-value is the probability of getting a statistic as extreme as observed, if H0 is true • The p-value measures the strength of the evidence the data provide against H0 • “If the p-value is low, the H0 must go” • If the p-value is not low, then you can not reject H0 and have an inconclusive test

  9. p-value • A p-value can be calculated by • A randomization test: simulate statistics assuming H0 is true, and see what proportion of simulated statistics are as extreme as that observed • Calculating a test statistic and comparing that to a theoretical reference distribution (normal, t, 2, F)

  10. Hypothesis Tests

  11. Regression • Regressionis a way to predict one response variable with multiple explanatory variables • Regression fits the coefficients of the model • The model can be used to • Analyze relationships between the explanatory variables and the response • Predict Y based on the explanatory variables • Adjust for confounding variables

  12. Probability

  13. Romance • What variables help to predict romantic interest? • Do these variables differ for males and females? • All we need to figure this out is DATA! • (For all of you, being almost done with STAT 101, this is the case for many interesting questions!)

  14. Speed Dating • We will use data from speed dating conducted at Columbia University, 2002-2004 • 276 males and 276 females from Columbia’s various graduate and professional schools • Each person met with 10-20 people of the opposite sex for 4 minutes each • After each encounter each person said either “yes” (they would like to be put in touch with that partner) or “no”

  15. Speed Dating Data What are the cases? • Students participating in speed dating • Speed dates • Ratings of each student

  16. Speed Dating What is the population? • Ideal population? • More realistic population?

  17. Speed Dating It is randomly determined who the students will be paired with for the speed dates. We find that people are significantly more likely to say “yes” to people they think are more intelligent. Can we infer causality between perceived intelligence and wanting a second date? • Yes • No

  18. Successful Speed Date? What is the probability that a speed date is successful (results in both people wanting a second date)? To best answer this question, we should use • Descriptive statistics • Confidence Interval • Hypothesis Test • Regression • Bayes Rule

  19. Successful Speed Date? 63 of the 276 speed dates were deemed successful (both male and female said yes). A 95% confidence interval for the true proportion of successful speed dates is • (0.2, 0.3) • (0.18, 0.28) • (0.21, 0.25) • (0.13, 0.33)

  20. Pickiness and Gender Are males or females more picky when it comes to saying yes? Guesses? • Males • Females

  21. Pickiness and Gender Are males or females more picky when it comes to saying yes? How could you answer this? • Test for a single proportion • Test for a difference in proportions • Chi-square test for association • ANOVA • Either (b) or (c)

  22. Pickiness and Gender Do males and females differ in their pickiness? Using α = 0.05, how would you answer this? a) Yes b) No c) Not enough information

  23. Reciprocity Are people more likely to say yes to someone who says yes back? How would you best answer this? • Descriptive statistics • Confidence Interval • Hypothesis Test • Regression • Bayes Rule

  24. Reciprocity Are people more likely to say yes to someone who says yes back? How could you answer this? • Test for a single proportion • Test for a difference in proportions • Chi-square test for association • ANOVA • Either (b) or (c)

  25. Reciprocity • Are people more likely to say yes to someone who says yes back? • p-value = 0.3731 • Based on this data, we cannot determine whether people are more likely to say yes to someone who says yes back.

  26. Race and Response: Females Does the chance of females saying yes to males differ by race? How could you answer this question? • Test for a single proportion • Test for a difference in proportions • Chi-square goodness of fit • Chi-square test for association • ANOVA

  27. Race and Response: Males Each person rated their date on a scale of 1-10 based on how much they liked them overall. Does how much males like females differ by race? How would you test this? • Chi-square test • t-test for a difference in means • Matched pairs test • ANOVA • Either (b) or (d)

  28. Physical Attractiveness Each person also rated their date from 1-10 on the physical attractiveness. Do males rate females higher, or do females rate males higher? Which tool would you use to answer this question? • Two-sample difference in means • Matched pair difference in means • Chi-Square • ANOVA • Correlation

  29. Physical Attractiveness The histogram shown is of the • data • bootstrap distribution • randomization distribution • sampling distribution 95% CI: (0.10, 0.71) p-value

  30. Other Ratings • Each person also rated their date from 1-10 on the following attributes: • Attractiveness • Sincerity • Intelligence • How fun the person seems • Ambition • Shared interests • Which of these best predict how much someone will like their date?

  31. Multiple Regression MALES RATING FEMALES: FEMALES RATING MALES:

  32. Ambition and Liking Do people prefer their dates to be less ambitious??? How does the perceived ambition of a date relate to how much the date is liked? How would you answer this question? • Inference for difference in means • ANOVA • Inference for correlation • Inference for simple linear regression • Either (b), (c) or (d)

  33. Simple Linear Regression MALES RATING FEMALES: FEMALES RATING MALES:

  34. Ambition and Liking r = 0.44, SE = 0.05 Find a 95% CI for . 0.28, SE = 0.06 Test whether 1 differs from 0.

  35. After taking STAT 101: • If you have a question that needs answering… ALL YOU NEED IS DATA!!! Thank You!!!

More Related