300 likes | 480 Views
Algebra1 Multiplying and Dividing Radical Expressions. Warm Up. Simplify. All variables represent nonnegative numbers. 1) √(360) 2) √(72) √(16) 3) √(49x 2 ) √(64y 4 ) 4) √(50a 7 ) √(9a 3 ). 1) 6√(10) 2) 3 √2 2 3) 7x 8y 2 4) 5a 2 √2 3.
E N D
Algebra1Multiplying and DividingRadical Expressions CONFIDENTIAL
Warm Up Simplify. All variables represent nonnegative numbers. 1) √(360) 2) √(72) √(16) 3) √(49x2) √(64y4) 4) √(50a7) √(9a3) 1) 6√(10) 2) 3√2 2 3) 7x 8y2 4) 5a2√2 3 CONFIDENTIAL
Multiplying Square Roots Multiply. Write each product in simplest form. A) √3√6 = √{(3)6} = √(18) = √{(9)2} = √9√2 = 3√2 Product Property of Square Roots Multiply the factors in the radicand. Factor 18 using a perfect-square factor. Product Property of Square Roots Simplify. CONFIDENTIAL
B) (5√3)2 = (5√3)(5√3) = 5(5).√3√3 = 25√{(3)3} = 25√9 = 25(3) = 75 Expand the expression. Commutative Property of Multiplication Product Property of Square Roots Simplify the radicand. Simplify the square root. Multiply. CONFIDENTIAL
C) 2√(8x)√(4x) = 2√{(8x)(4x)} = 2√(32x2) = 2√{(16)(2)(x2)} = 2√(16)√2√(x2) = 2(4).√2.(x) = 8x√2 Product Property of Square Roots Multiply the factors in the radicand. Factor 32 using a perfect-square factor. Product Property of Square Roots. CONFIDENTIAL
Now you try! Multiply. Write each product in simplest form. 1a) √5√(10) 1b) (3√7)2 1c) √(2m) + √(14m) 1a) 5√2 1b) 63 1c) 2m√7 CONFIDENTIAL
Using the Distributive Property Multiply. Write each product in simplest form. A) √2{(5 + √(12)} = √2.(5) + √2.(12) = 5√2 + √{2.(12)} = 5√2 + √(24) = 5√2 + √{(4)(6)} = 5√2 + √4√6 = 5√2 + 2√6 Distribute √2. Product Property of Square Roots. Multiply the factors in the second radicand. Factor 24 using a perfect-square factor. Product Property of Square Roots Simplify. CONFIDENTIAL
B) √3(√3 - √5) = √3.√3- √3.√5 = √{3.(3)} - √{3.(5)} = √9 - √(15) = 3 - √(15) Distribute √3. Product Property of Square Roots. Simplify the radicands. Simplify. CONFIDENTIAL
Now you try! Multiply. Write each product in simplest form. 2a) √6(√8 – 3) 2b) √5{√(10) + 4√3} 2c) √(7k)√7 – 5) 2d) 5√5(-4 + 6√5) 2a) 4√3 - 3√6 2b) 5√2 + 4√(15) 2c) 7√k - 5√(7)k 2d) 150 - 20√5 CONFIDENTIAL
In the previous chapter, you learned to multiply binomials by using the FOIL method. The same method can be used to multiply square-root expressions that contain two terms. CONFIDENTIAL
Multiplying Sums and Differences of Radicals Multiply. Write each product in simplest form. A) (4 + √5)(3 - √5) = 12 - 4√5 + 3√5 – 5 = 7 - √5 B) (√7 - 5)2 = (√7 - 5) (√7 - 5) = 7 - 5√7 - 5√7 + 25 = 32 - 10√7 Use the FOIL method. Simplify by combining like terms. Expand the expression. Use the FOIL method. Simplify by combining like terms. CONFIDENTIAL
Now you try! Multiply. Write each product in simplest form. 3a) (3 + √3)(8 - √3) 3b) (9 + √2)2 3c) (3 - √2)2 3d) (4 - √3)(√3 + 5) 3a) 21 + 5√3 3b) 83 + 18√2 3c) 11 - 6√2 3d) 17 - √3 CONFIDENTIAL
A quotient with a square root in the denominator is not simplified. To simplify these expressions, multiply by a form of 1 to get a perfect-square radicand in the denominator. This is called rationalizing the denominator. CONFIDENTIAL
Rationalizing the Denominator Simplify each quotient. A) √7 √2 = √7 . (√2) √2 (√2) = √(14) √4 = √(14) 2 Multiply by a form of 1 to get a perfect-square radicand in the denominator. Product Property of Square Roots Simplify the denominator. CONFIDENTIAL
B) √7 √(8n) = √7 √{4(2n)} = √7 2√(2n) = √7 . √(2n) 2√(2n) √(2n) = √(14n) 2√(2n2) = √(14n) 2 (2n) = √(14n) 4n Write 8n using a perfect-square factor. Simplify the denominator. Multiply by a form of 1 to get a perfect-square radicand in the denominator. Product Property of Square Roots Simplify the square root in the denominator. Simplify the denominator. CONFIDENTIAL
Now you try! Simplify each quotient. 4b) √(7a) √(12) 4a) √(13) √5 4c) 2√(80) √7 4a) √(65) 5 4b) √(21a) 6 4c) 8√(35) 7 CONFIDENTIAL
Assessment Multiply. Write each product in simplest form. • √2√3 • √3√8 • (5√2)2 • 3√(3a)√(10) • 2√(15p)√(3p) 1) √6 2) 2√6 3) 125 4) 3√(30a) 5) 6p√5 CONFIDENTIAL
Multiply. Write each product in simplest form. 6) 2√6 + √(42) 7) 5√3 - 3 8) √(35) - √(21) 9) 2√5 + 16 10) 5√(3y) + 4√(5y) • √6(2 + √7) • √3(5 - √3) • √7{√5 - √3) • √2{√(10) - 8√2} • √(5y){√(15) + 4} CONFIDENTIAL
Multiply. Write each product in simplest form. • (2 + √2) (5 + √2) • (4 + √6) (3 - √6) • (√3 - 4) (√3 + 2) • (5 + √3)2 • (√6 - 5√3)2 11) 12 - 7√2 12) 6 - √6 13) -5√ - 2√3 14) 28 + 10√3 15) 54 + 36√2 CONFIDENTIAL
Simplify each quotient. 17) √(11) 6√3 16) √(20) √8 19) √3 √6 18) √(28) √(3s) 16) √(10) √2 17) √(33) 18 18) 2√(21s) 3s 19) √6 2 20) √(3x) x 20) √3 √x CONFIDENTIAL
Let’s review Multiplying Square Roots Multiply. Write each product in simplest form. A) √3√6 = √{(3)6} = √(18) = √{(9)2} = √9√2 = 3√2 Product Property of Square Roots Multiply the factors in the radicand. Factor 18 using a perfect-square factor. Product Property of Square Roots Simplify. CONFIDENTIAL
B) (5√3)2 = (5√3)(5√3) = 5(5).√3√3 = 25√{(3)3} = 25√9 = 25(3) = 75 Expand the expression. Commutative Property of Multiplication Product Property of Square Roots Simplify the radicand. Simplify the square root. Multiply. CONFIDENTIAL
Using the Distributive Property Multiply. Write each product in simplest form. A) √2{(5 + √(12)} = √2.(5) + √2.(12) = 5√2 + √{2.(12)} = 5√2 + √(24) = 5√2 + √{(4)(6)} = 5√2 + √4√6 = 5√2 + 2√6 Distribute √2. Product Property of Square Roots. Multiply the factors in the second radicand. Factor 24 using a perfect-square factor. Product Property of Square Roots Simplify. CONFIDENTIAL
In the previous chapter, you learned to multiply binomials by using the FOIL method. The same method can be used to multiply square-root expressions that contain two terms. CONFIDENTIAL
Multiplying Sums and Differences of Radicals Multiply. Write each product in simplest form. A) (4 + √5)(3 - √5) = 12 - 4√5 + 3√5 – 5 = 7 - √5 B) (√7 - 5)2 = (√7 - 5) (√7 - 5) = 7 - 5√7 - 5√7 + 25 = 32 - 10√7 Use the FOIL method. Simplify by combining like terms. Expand the expression. Use the FOIL method. Simplify by combining like terms. CONFIDENTIAL
Rationalizing the Denominator Simplify each quotient. A) √7 √2 = √7 . (√2) √2 (√2) = √(14) √4 = √(14) 2 Multiply by a form of 1 to get a perfect-square radicand in the denominator. Product Property of Square Roots Simplify the denominator. CONFIDENTIAL
B) √7 √(8n) = √7 √{4(2n)} = √7 2√(2n) = √7 . √(2n) 2√(2n) √(2n) = √(14n) 2√(2n2) = √(14n) 2 (2n) = √(14n) 4n Write 8n using a perfect-square factor. Simplify the denominator. Multiply by a form of 1 to get a perfect-square radicand in the denominator. Product Property of Square Roots Simplify the square root in the denominator. Simplify the denominator. CONFIDENTIAL
You did a great job today! CONFIDENTIAL