330 likes | 541 Views
Other Current and Principal Collaborators: J. Als-Nielsen, V. Balagurusamy , E. DiMasi, E. Kawamoto, O. Gang, P. Huber, O. Magnussen, K. Penanen, M. Regan, ,M.Schlossman, D.Schwartz, H. Tostmann, . The Structure Liquid Surfaces.
E N D
Other Current and Principal Collaborators: J. Als-Nielsen, V. Balagurusamy, E. DiMasi, E. Kawamoto, O. Gang, P. Huber, O. Magnussen, K. Penanen, M. Regan, ,M.Schlossman, D.Schwartz, H. Tostmann, The Structure Liquid Surfaces • O. G. Shpyrko, A. Y. Grigoriev, R. Streitel,D. Pontoni, P. S. Pershan, M. Deutsch, and B. M. Ocko, "Atomic-scale surface demixing in a eutectic liquid BiSn alloy."Phys. Rev. Lett. 95, 106103 (2005). • O. G. Shpyrko, A. Y. Grigoriev, R. Streitel, V. Balagurusamy, P. S. Pershan, M. Deutsch, B. M. Ocko, M. Meron, and B. Lin, "Surface freezing and surface layering in AuSi Liquid Alloy",In Preparation (2005). P. S. Pershan DEAS & Dept . Of Physics, Harvard Univ. Cambridge, MA 02421 DMR-0124936; NSF 03-03916; DE-FG02-88-ER45379
Footprint of whale (biomaterial on surface of sea).http://web.mit.edu/1.63/www/ (Chiang C, Mei and T. R Akylas Condensed Matter: 20th Century Solids:•Bulk (3d) Structure Band Gaps, exotic Fermi Surfaces, etc•Surfaces (2d) Localized Electron States, physisorption, metal/semiconductor interface (rectification), etc. Liquids: Absence of Structure Less Phenomena•Bulk (3d): Liquid Structure Factor•Surfaces (2d): Surface tension, Langmuir monolayers, wetting. Ancient History of Liquid Surfaces:Pliny the Elder (~50 AD) & Ben FranklinSurfactants (oil) calm water surface waves Pershan: BarIlan Jan 06
Modern Era of Surface Science True emergence of solid state surface physics: Electron Spectroscopy (Brundle, 1974) & Auger Spectroscopy (Harris, 1974) followed by STM, AFM, etc ••••Synchrotron: SSRL(1973), NSLS (1984), APS (1998) •••• Ref: A. Zangwill, Physics at Surfaces (Cambridge University Press,1988) X-rays & Surfaces (Solid): •Reflectivity (Parratt ’54)•Grazing Incidence Diffraction(GID) (Marra, Eisenberger, Cho ’79) New tool: probe buried interfaces and structure far below the surface (i.e. GaAs-Al interface) THIS TALK: X-RAY AND LIQUID SURFACES Pershan: BarIlan Jan 06 Liquid Surfaces: Reflectivity: Als-Nielsen and Pershan ‘82 (Liquid Crystal)&’85 (Water):GID: Dutta ‘88 , Grayer-Wolf ‘88(Langmuir monolayer on water).
Critical Angle (c) Classical Optics: Fresnel Reflectivity from Flat SurfaceA. H. Compton and S. K. Allison ‘35: X-ray Reflectivity: Flat Surfaces X-ray Energy: Typical Binding Energy: Index of Refraction Critical Wavevector Qc=(4π/)sin() 2π//c Pershan: BarIlan Jan 06
Bragg Scattering From Crystal ks Reflection ~ ki Truncation Rods from Crystal Surface X-Rays and Crystal Surfaces Pershan: BarIlan Jan 06 Surface Information: Intensity along truncation rods Extra Peaks due to Surface Phases (reconstruction)
Surface Structure Factor If Liquid Surface was FLAT Specular would be the Only Truncation Rod Bulk Liquid Diffuse Scattering: Separated via (Qx,Qy) Liquid vs Solid Surfaces Surfaces ARE NOT FLAT! Pershan: BarIlan Jan 06 Liquid Surface Information: Surface Structure Factor (Qz) Extra peaks due to Langmuir monolayer or Surface Frozen phases.
For a solid: Fourier Transform Surface Roughness Pershan: BarIlan Jan 06 Reflectivity Structure Factor + Debye -Waller
Fluctuations of Surface of Bulk Liquid qmax~1/Atom Pershan: BarIlan Jan 06 Not (Qxy)
Solid: Effect of Resolution on R(Qz)is Minor Liquid: Small i~Nearly Solid Like Liquid: Large i~Capillary Effects Dominate Increasing Qz or Effect of Resolution Scan Detector s Pershan: BarIlan Jan 06 Small angles liquids are like solids / large angles they are not!
Simulated Detector Scan The Liquid Surface Reflectometer HasyLab: Als-Nielsen, Christensen, Pershan, PRL (`82). NSLS: X22B, X19C APS: CHEMMATCARS, CMC, CAT ESRF: ID15A (Alternate Design) H. Reichert ‘03 Pershan: BarIlan Jan 06
Peak vanishes for slight increase in Qz Qz (or iIncreasing 0.3 Å-1 to 1 Å-1 Increasing0.08 to ~ 1 Qy(1/Å) Data for Water with increasing CMC CAT Shpyrko, Fukuto, Pershan, Ocko, Gog, I. Kuzmenko, Deutsch,,Phys. Rev. B (2004). Pershan: BarIlan Jan 06
Isotropic/Nematic/Smectic-A Surface Induced Smectic z Surface Induced Layering: (Qz)Nematic Surface Smectic-A Order Pershan: BarIlan Jan 06
1/WidthSurface vs. Bulk |(Qz)|2 Nematic Phase: 1st Observed Surface Induced Layering First Data (Pershan, Als-Nielsen.PRL, ‘84) RF(Qz) T-TNA 0.05 C 2.8 11.6 Pershan: BarIlan Jan 06
Surface Structure Factor Simple Surface Structure Factor F(Qz)|2 Thermal Factor R(Qz) = RF(Qz) Reflectivity & Surface Structure Factor (Layers) Prediction: Constructive Interference Qz=(4p/l)sin a =(2p/D) •When do surface layers appear? •Quantitative Measure of F(Qz)! Pershan: BarIlan Jan 06
Solid-liquid interfaceHard wall Density Profile vs Depth Liquid vapor interface Molecular Simulations G. A. Chapela, G. Saville, S. M. Thompson, and J. S. Rowlinson, "Computer simulation of a gas-liquid interace",J. C. S. Faraday Trans II 73, 1133 (1977).Lennard-Jones (12,6) molecules Accepted Lore: Density Profile at Free Surface is Monotonic Pershan: BarIlan Jan 06 Liquid Crystals are Different:• Why?• What else is different?
Bulk (3d)Correlation Function: Characteristic Wavevector: Q0 & Correlation Length: Surface Induced Layering: Surface Field: h(z=0) Translation Energy vs Entropy Simple Thoughts on Surface Layering Order Parameter (r): Electron, Mass, or Particle Density Bulk Susceptibility: Zsurf(Q0) Pershan: BarIlan Jan 06
2D Crystal 2D Liquid Langmuir Monolayeron H2O or Hg 2D Surface Crystal Surface Freezing Long Chain Alkanes Metallic Alloys SubSurface 3D Liquid Solid/Liquid Interface •Commensurate/Incommensurate 2d •Layering In Plane Surface Order Pershan: BarIlan Jan 06
Digest of Liquid Surface Order Experiments: Simulations: Pershan: BarIlan Jan 06
D'Evelyn & . Rice, J. Chem. Phys., 1983. Simuation (Lennard-Jones Liquids) For Metals Particle-Particle InteractionsChange Across The Surface Metallic Liquids Dielectric Liquids Vapor: Neutral Atoms Interactions are Same in Vapor and Liquid Different Interactions Liquid: Positive Ions in Sea of Negative Fermi Liquid Why are Liquid Metals Different? Pershan: BarIlan Jan 06 This influences the structure of the surface! Goal: Measure Intrinsic Surface Structure Factor (Qz)
Hg Ga In Observe Apparent Difference Typical Liquid Metal Measurements • Magnussen, Ocko, Regan, Penanen, PershanM. Deutsch ,PRL (1995). • Regan, Kawamoto, Pershan, Maskil, Deutsch, Magnussen, Ocko, L. E. Berman, PRL (1995). • Tostmann,DiMasi, Pershan, Ocko, Shpyrko, M. Deutsch, PRB (1999). Effect of T (Liquid Ga) Structure Factor Thermal Factor Pershan: BarIlan Jan 06
Liquid Ga Electron Density Profile Removal of Thermal Factor Indium T- effects removed& not removed Ga & In with T-effects removed Pershan: BarIlan Jan 06
R/(RF x Thermal) for Ga, Inand K Metallic Layering Is not Due to High Surface Tension H2O vs Liquid Metals In(~550mN/m)Ga(~750mN/m)K(~100mN/m)H2O(73mN/m) K Pershan: BarIlan Jan 06 H2O
Gibbs Absorption: GaBi Alloy (Bi)= 398 mN/m (Ga)=750 mN/m Pershan: BarIlan Jan 06 Monolayer of Bi Coats Liquid Surface Thick Wetting Layer of Bi-Rich Liquid vs Temperature
(Bi)≈ 398(Sn)≈567 dyne/cm Liquid Metals of Electronic Interest (I): BiSnO. G. Shpyrko, A. Y. Grigoriev, R. Streitel, D. Pontoni, P. S. Pershan, M. Deutsch, and B. M. Ocko, "Atomic-scale surface demixing in a eutectic liquid BiSn alloy."Phys. Rev. Lett. 95, 106103 (2005). Energy Dispersive Reflectivity 142 °C Tm=138°C Pershan: BarIlan Jan 06
Density vs z! Au Sn Liquid Metals of Electronic Interest (II): Au71 Sn29 Sn=559 mN/m ; Au=1258 Pershan: BarIlan Jan 06
Liquid Metals of Electronic Interest (III) Au80.5Si19.5 eutectic alloy Pershan: BarIlan Jan 06 Detector (S)-ScanAlloy is Liquid g=780 dynes/cm
Simple Layering Model (i.e. Ga or In)1200 dyne/cm 718 dyne/cm Surface Phase Transition vs T Reflectivity/(RF)2 Phases Not Divided by Thermal Pershan: BarIlan Jan 06
Typical ProfilesGa & In Low T Phase High T Phase Model Density Profiles AuSi(Preliminary) Pershan: BarIlan Jan 06
2D Order of Surface Phases (GID) Au (4) Si(8) In-plane structure model: AuSi2 Low Temperature Phase Electron Density~ 1/2 to 1/3 bulk Silicide on Au(111)Green & Bauer, JAP, ‘81 (7.35 Åx 9.22 Å) Pershan: BarIlan Jan 06 Truncation Rod Monolayer
AuSi ~ 10 x AuGe & elements AuSi, AuGe vs Elements Pershan: BarIlan Jan 06
Effects: •Layering induced by hard wall!•Surface induced in-plane order! Path > 20 mm Ga Abs. Length 0.05mm(10 KeV) 0.13mm(30KeV) H. Reichert, et a;/ Physica B-Condensed Matter (03). van der Veen and Reichert, MRS Bulletin (04). The FutureThe Buried Liquid/Solid Interface Problems with conventional approach: •Absorption in Liquid•Bulk Diffuse Scattering Pershan: BarIlan Jan 06 Si Abs. Length ~17 mm(70 Kev) Beam Height ~10 m Path ~ 5 mm
Summary • Solid vs Liquid Surfaces • Reviewed X-ray Methods of Surfaces Special Requirements of LiquidsCARS, -CAT, CMC • Surface Roughness: Capillary Waves • Examples of Liquid Surface Order • Liquid Metals vs Non-Metals • Alloys: AuSi >10 x Others: Surface Freezing • Future: Buried Interfaces Pershan: BarIlan Jan 06