1 / 41

Struktur eines Fuzzy-Systems

Struktur eines Fuzzy-Systems. Seminar Unscharfe Logik. Robert Nickel Matrikel: 9801835. Einführung: Fuzzy-Control. Fuzzy-System als Regelkreis. 1. Fuzzifizierung. (Naiv: Unscharf machen).

hugh
Download Presentation

Struktur eines Fuzzy-Systems

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Struktur eines Fuzzy-Systems Seminar Unscharfe Logik Robert Nickel Matrikel: 9801835 Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  2. Einführung: Fuzzy-Control Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  3. Fuzzy-System als Regelkreis Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  4. Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  5. 1. Fuzzifizierung (Naiv: Unscharf machen) • Systemdefinition in Form von linguistischen Variablen (Regelgrößen, Eingabedaten, jeweils mit Wertebereich) • Festlegen der einzelnen unscharfen Mengen (Ausprägungen der linguistischen Variablen) • Festlegen der Zugehörigkeitsfunktionen jeder Ausprägung Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  6. 1. Fuzzifizierung (Naiv: Unscharf machen) • Benötigte Fuzzy-Formalismen: • (LR - ) Fuzzy-Zahlen • (LR - ) Fuzzy-Intervalle • Modifizierer (zur sinnvollen Interpretation der linguistischen Variablen) Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  7. 1. Fuzzifizierung (Naiv: Unscharf machen) Resultat: Def: Seien X1,...,Xn Eingangsgrößen des Systems,Y die Ausgangsgröße, ling(Xi) die Menge der linguistischen Ausprägungen von Xi und Xi die Wertebereiche der Zugehörigkeitsfunktionen Xi Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  8. Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  9. 2. Regelbasis • Naiv: Auf welche Eingabedaten folgt welche Änderung der Steuergröße • Bsp: • IF T=heiß THEN Regler=kleinIF T=kalt THEN Regler=groß • Regeln basieren auf Erfahrungswerten oder logischen Fakten • Einige Regeln können gegenüber anderen bevorzugt behandelt werden Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  10. 2. Regelbasis (Formal) System von Regeln der Form: IF bedingungen THEN Y=y_var [WITH CERTAINTY=cj] bedingungen := bedingung op bedingungen | op := AND | OR | KOMP1 |...| KOMPkbedingung := [NOT] X1  x1_var |...| [NOT] Xn  xn_var  : Kompatibilitätsoperatorop : Aggregationsoperatorencj : Vertrauensfaktor Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  11. 2. Regelbasis • Vorteile: • Erweiterbarkeit (Regeln leicht hinzufügen) • Modularität (Jede Regel ist für sich selbständig) • Modifizierbarkeit (kleine Änderung -> kleine Wirkung) • Verständlichkeit (Kann praktisch jeder lesen) • Transparenz (Entscheidnungen sofort erklärbar) Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  12. Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  13. 3. Inferenz (Naiv: Aus Eingaben und Regeln sinnvolle Schlüsse ziehen) Eingaben liegen in Form von Ausprägungen A1,...,An der linguistischen Variablen X1,...,Xn vor und können als skalare Größe (exakter Meßwert) oder als Fuzzy-Menge (toleranzbehafteter Wert) vorliegen. Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  14. 3. Inferenz (Naiv: Aus Eingaben und Regeln sinnvolle Schlüsse ziehen) • Problematik: • Wahl des Kompatibilitätsmaßes • Wahl der Aggregationsoperatoren (AND / OR / NOT ...) • Wahl der Art des Einflusses der Vertrauensfaktoren cj • Wahl der Inferenzoperators (Folgerung aus einer Gleichung) • Wahl des Akkumulationsoperators (Zusammenfügen der Regeln) Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  15. 3. Inferenz 3.1 Wahl des Kompatibilitätsmaßes • Problemstellung: • Wann sind zwei Fuzzy-Mengen gleich ( A  B ) ? • Bzw.: In welchem Maße ähnelt Menge A der Menge B Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  16. 3. Inferenz 3.1 Wahl des Kompatibilitätsmaßes • Lösung (Fuzzy-Metrik) : • Distanzoperatoren :X x X  [0,1] mit • (A,A) = 0 • (A,B) = (B,A) • (A,C)  (A,B) + (B,C) Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  17. 3. Inferenz 3.1 Wahl des Kompatibilitätsmaßes Beispiele für Distanzmaße von Fuzzy-Mengen: Flächendistanz: Schwerpunktdistanz: Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  18. 3. Inferenz 3.1. Wahl des Kompatibilitätsmaßes  Das daraus resultierende Kompatibilitätsmaß Liefert ein Maß für die Gleichheit der unscharfen Mengen A und B Sonderfall: Bei skalarem Meßwert kanngewählt werden Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  19. 3. Inferenz 3.2. Wahl der Aggregationsoperatoren Problemstellung: In jeder Regel Rj müssen die ermittelten Kompatibilitätsmaße Kij für Xi  Ai über AND/OR oder sogenannte kompensatorische Operatoren miteinander kombiniert werden Gesucht: Gültigkeitswert für Fuzzy-logische Aussage K1j AND K2j OR ... KOMPk Knj Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  20. 3. Inferenz 3.2. Wahl der Aggregationsoperatoren Einführung kompensatorischer Operatoren ( Mittelwerte zwischen AND und OR ) : Def: (1) Stabilität: (2) Monotonie: (3) Kommutativität: Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  21. 3. Inferenz 3.2. Wahl der Aggregationsoperatoren Die Umsetzung von AND und OR kann über verschiedene t- bzw. s-Normen erfolgen. Die Wahl dieser Normen unterliegt dabei keinerlei Einschränkungen und beruht hauptsächlich auf Erfahrungswerten und praktischen Gesichtspunkten Resultat: Zu jeder Regel Rj kann nun ein Gültigkeitsgrad Gj berechnet werden. Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  22. 3. Inferenz 3.3. Wahl der Art des Einflusses der Vertrauensfaktoren cj • Der Gültigkeitsgrad Gj jeder Regel kann mit einem Vertrauensfaktor cj[0,1] „skaliert“ werden. Damit kann man einigen Regeln mehr und anderen weniger Bedeutung/Vertrauen zuweisen. • - Kann über jede t-Norm geschehen • Beispiele: • t(c,G) = c*G -> Der Einfluß der Regel wird um den Faktor c abgeschwächt • t(c,G) = min(c,G) -> Der Einfluß der Regel ist maximal vom Grad c Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  23. 3. Inferenz 3.3. Wahl der Art des Einflusses der Vertrauensfaktoren cj Beispiel: IF geschwindigkeit = zu langsam THEN beschleunigung = positiv WITH CERTAINTY = 0.7 IF geschwindigkeit = zu schnell THEN beschleunigung = negativ WITH CERTAINTY = 1  Das Abbremsen wird bevorzugt gegenüber dem Beschleunigen behandelt Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  24. 3. Inferenz 3.4. Wahl des Inferenz-Operators • Liefert in Form einer Fuzzy-Menge eine Aussage darüber, wo nach Auswertung einer einzelnen Regel Rj die Steuergröße (Output Y) gewählt werden sollte • D.h.: Die Schlußfolgerung „THEN Y=y_var“ aus der Regelbasis muß noch mit dem gerade berechneten Gültigkeitsgrad Gj „skaliert“ werden. • Diese „Skalierung“ kann über jede t-Norm erfolgen Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  25. 3. Inferenz 3.4. Wahl des Inferenz-Operators Beispiel: IF wasser=heiß THEN wasserhahn=kalt  Gültigkeit: Gj=0.4 Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  26. 3. Inferenz 3.5. Wahl des Akkumulationsoperators • Jeder Regel Rj wird nun ist eine Fuzzy-Menge Ej zugeordnet, die Aussage darüber gibt, wie die Steuergröße am besten zu wählen ist • Man hat also für jede Regel eine Empfehlung Ej , die sich stark von den anderen unterscheiden kann • Diese Mengen müssen sinnvoll miteinander kombiniert werden • Dies geschieht z.B. über eine bel. s-Norm (Fuzzy-OR) Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  27. 3. Inferenz 3.5. Wahl des Akkumulationsoperators Beispiel: E1 E2 E3 E* Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  28. 3. Inferenz • Ergebnis der Inferenzstrategie: • Fuzzy-Menge, die angibt, wo die Steuergröße Y mehr bzw. weniger sinnvoll zu wählen ist • Muß noch interpretiert werden ! • Bezeichnung: E* Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  29. Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  30. 4. Defuzzifizierung Naiv: Sinnvolle Interpretation der unscharfen Empfehlungen • Zwei Hauptmethoden: • Schwerpunktsmethode (x-Koordinate des Schwerpunktes der Fläche unter E*) • Maximummethode (eine x-Koordinate, an der die Funktion E* maximal ist) Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  31. 4. Defuzzifizierung Varianten der Schwerpunktmethode COA - center of area Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  32. 4. Defuzzifizierung Varianten der Schwerpunktmethode • MCOA - modified center of area • Empfehlungen Ej werden nicht sofort akkumuliert • Flächenschwerpunkt der Ej (in unmodifizierter Form) ist bereits zur Compilierzeit bekannt Muß nicht live berechnet werden • Bildung des mit den Gültigkeitsgraden Gj gewichtete Mittel liefert Näherung für den Flächenschwerpunkt Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  33. 4. Defuzzifizierung Varianten der Schwerpunktmethode MCOA - modified center of area Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  34. 4. Defuzzifizierung Varianten der Schwerpunktmethode COM - center of maximum Weitere Vereinfachung: Statt der Berechnung der Schwerpunkte sj wird der Mittelwert der Kerne der Ej (unmodifiziert) benutzt Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  35. 4. Defuzzifizierung Varianten der Maximummethode MOM mean of maximum Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  36. 4. Defuzzifizierung Varianten der Maximummethode LOM / ROM - left / right of maximum Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  37. Beispiel Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  38. Beispiel Kurvenabstand x1 Innenabstand x2 Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  39. Beispiel Fahrtrichtung x3 Außenabstand x4 Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  40. Beispiel  Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

  41. Quellen [1] - A. Mayer - Fuzzy Logic - Addison Wesley 1993 [2] - D. Traeger - Einführung in die Fuzzy-Logik - Teubner 1993 [3] - B. Biewer - Fuzzy-Methoden - Springer 1997 Grafiken: [3] Seminar unscharfe Logik - Thema: Stuktur eines Fuzzy-Systems - Robert Nickel

More Related