1 / 9

Target Detection using Advance Mapping methods

Target Detection using Advance Mapping methods. Mirza Muhammad Waqar Contact: mirza.waqar@ist.edu.pk +92-21-34650765-79 EXT:2257. RG712. Course: Special Topics in Remote Sensing & GIS. Outlines . Matched Filtering (MF) Mixture Tuned Matched Filtering (MTMF)

hugh
Download Presentation

Target Detection using Advance Mapping methods

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Target Detection using Advance Mapping methods Mirza Muhammad Waqar Contact: mirza.waqar@ist.edu.pk +92-21-34650765-79 EXT:2257 RG712 Course: Special Topics in Remote Sensing & GIS

  2. Outlines • Matched Filtering (MF) • Mixture Tuned Matched Filtering (MTMF) • Constrained Engery Minimization (CEM) • Adaptive Coherence Estimator (ACE) • Spectral Angle Mapper (SAM) • Orthogonal Subspace Projection (OSP) • Target Constrained Interference-Minized Filter (TCIMF) • Mixture Tuned TCIMF (MTTCIMF)

  3. Matched Filtering • Matched Filtering to find the abundances of user-defined endmembers using a partial unmixing. • Not all of the endmembers in the image need to be known. • This technique maximizes the response of the known endmember and suppresses the response of the composite unknown background, thus matching the known signature.

  4. Match Filtering • It provides a rapid means of detecting specific materials based on matches to library or image endmember spectra • Does not require knowledge of all the endmembers within an image scene. • This technique may find some false positives for rare materials.

  5. MTMF (Mixture-Tuned Matched Filtering ) • Is a hybrid method based on the combination of the matched filter method (no requirement to know all the endmembers) and linear mixture theory. • The results are two images: • a MF score image with 0 to 1 (1 is perfect match), and • A infeasibility image, the smaller the better match. • Infeasibility is based on both noise and image statistics and indicates the degree to which the Matched Filtering result is a feasible mixture of the target and the background. • Pixels with high infeasibilities are likely to be false positives regardless of their matched filter value. • Use 2-D scatter plot to locate those pixels in an image.

  6. MTMF (Mixture-Tuned Matched Filtering )

  7. Spectral Angler Mapper (SAM) • Matches image spectra to reference target spectra in n dimensions. SAM compares the angle between the target spectrum (considered an n-dimensional vector, where n is the number of bands) and each pixel vector in n-dimensional space. • Smaller angles represent closer matches to the reference spectrum. When used on calibrated data, this technique is relatively insensitive to illumination and albedo effects.

  8. Orthogonal Subspace Projection (OSP) • OSP first designs an orthogonal subspace projector to eliminate the response of non-targets, then applies MF to match the desired target from the data. • OSP is efficient and effective when target signatures are distinct. When the spectral angle between the target signature and the non-target signature is small, the attenuation of the target signal is dramatic and the performance of OSP could be poor.

  9. Questions & Discussion

More Related