1.39k likes | 1.64k Views
I Course Biomedical Applications of Mathematics Elements of cardiocirculatory physiology. Roberto Bonmassari S.C. di Cardiologia APSS-Ospedale Santa Chiara Trento. Preamble. A Course of Biomedical Applications of Mathematics …… when the Hospital goes out and
E N D
I CourseBiomedicalApplicationsofMathematicsElementsofcardiocirculatoryphysiology Roberto Bonmassari S.C. di Cardiologia APSS-Ospedale Santa Chiara Trento
Preamble A Course of Biomedical Applications of Mathematics ……when the Hospital goes out and meet the University I’m not a physiologyst I am a clinician, a cardiologist
Agenda Four lessons: 18 - 25 september, 2 – 11 october Aspects of cardiac anathomy The cardiac and circolatory function: phisiologic aspects Examples of clinical application of a phisiologic application in a pathologic condition: coronary stenosis and aortic stenosis
The heart is costituted from 4 chambers:2 atria (right and left)2 ventricles (right and left)
POLMONE CUORE ORGANI Scambio Gassoso Piccolo Circolo Funzione di Pompa Grande Circolo Consumo di Ossigeno
The Heartis a pump The cardiac pump is the ground of the circulation The are two circulation system that works in series: systemic and pulmonary circulation The cardiac pump has the primary function of insurance an adeguate amount of blood flow through the systemic and the pulmonary vessel bed The cardiac pump works with two mechanisms : blood aspiration and pushing
The Heartis a pump The cardiac pump produce a mechanical result (the circulation of the bood) due to the contraction and relaxation of the muscolar wall of the cardiac chambers (ventriculi and atria) But what is the primum movens of the cardiac function? Upstrem the mechanical function is necessary the electric function: the electric excitation
The conduction system: Physiology and pathology Nodo del seno Nodo atrio-ventricolare Fascio di His Branca sinistra Branca destra Fibre di Purkinje
The Heartis a pump The cardiac electrical activity is an automatic activity Is only marginally influenced by nervous system These are the basis of the electro-mechanical coupling partneship
Arterial Pressure Curve Ventricular Ejection Phase Atrial Systole Ventricular Filling Isovolumetric Contraction Isovolumetric Relaxation 120 Semi-Lunar Valve Closes Semi-Lunar Valve Opens 100 Arterial Pressure 80 60 Pressure (mm Hg) 40 AV Valve Closes AV Valve Opens 10 Ventricular Pressure 0 R Electrocardiogram T P S Q Atrial Systole Ventricular Systole Diastole Approx. Time 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 The cardiaccycle Fasi 1 contrazione Vs 2 rilasciamento Vs 3 riempimento Vs Ciclo di Wiggers 1915 1 2 3 3
Ventricular Ejection Phase Atrial Systole Ventricular Filling Isovolumetric Contraction Isovolumetric Relaxation 120 Semi-Lunar Valve Closes Semi-Lunar Valve Opens 100 Arterial Pressure 80 60 Pressure (mm Hg) 40 AV Valve Closes AV Valve Opens 10 Ventricular Pressure 0 R Electrocardiogram T P S Q Atrial Systole Ventricular Systole Diastole Approx. Time 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Arterial Pressure Curve
Ventricular Ejection Phase Atrial Systole Ventricular Filling Isovolumetric Contraction Isovolumetric Relaxation 120 Semi-Lunar Valve Closes Semi-Lunar Valve Opens 100 Arterial Pressure 80 60 Pressure (mm Hg) 40 AV Valve Closes AV Valve Opens 10 Ventricular Pressure 0 R Electrocardiogram T P S Q Atrial Systole Ventricular Systole Diastole Approx. Time 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Ventricular Filling Arterial Pressure Curve
Ventricular Ejection Phase Atrial Systole Ventricular Filling Isovolumetric Contraction Isovolumetric Relaxation 120 Semi-Lunar Valve Closes Semi-Lunar Valve Opens 100 Arterial Pressure 80 60 Pressure (mm Hg) 40 AV Valve Closes AV Valve Opens 10 Ventricular Pressure 0 R Electrocardiogram T P S Q Atrial Systole Ventricular Systole Diastole Approx. Time 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Arterial Pressure Curve Atrial Systole
Ventricular Ejection Phase Atrial Systole Ventricular Filling Isovolumetric Contraction Isovolumetric Relaxation 120 Semi-Lunar Valve Closes Semi-Lunar Valve Opens 100 Arterial Pressure 80 60 Pressure (mm Hg) 40 AV Valve Closes AV Valve Opens 10 Ventricular Pressure 0 R Electrocardiogram T P S Q Atrial Systole Ventricular Systole Diastole Approx. Time 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Arterial Pressure Curve Isovolumetric Contraction
Ventricular Ejection Phase Atrial Systole Ventricular Filling Isovolumetric Contraction Isovolumetric Relaxation 120 Semi-Lunar Valve Closes Semi-Lunar Valve Opens 100 Arterial Pressure 80 60 Pressure (mm Hg) 40 AV Valve Closes AV Valve Opens 10 Ventricular Pressure 0 R Electrocardiogram T P S Q Atrial Systole Ventricular Systole Diastole Approx. Time 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Ventricular Ejection Arterial Pressure Curve
Ventricular Ejection Phase Atrial Systole Ventricular Filling Isovolumetric Contraction Isovolumetric Relaxation 120 Semi-Lunar Valve Closes Semi-Lunar Valve Opens 100 Arterial Pressure 80 60 Pressure (mm Hg) 40 AV Valve Closes AV Valve Opens 10 Ventricular Pressure 0 R Electrocardiogram T P S Q Atrial Systole Ventricular Systole Diastole Approx. Time 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Arterial Pressure Curve Isovolumetric Relaxation
Left 300 200 Coronary Blood Flow (ml/min) Right 100 0 Diastole Systole Slide courtesy of A.C. Guyton, MD, Textbook of Medical Physiology, Sixth Edition, 1981 W.B. Saunders Company
Howis the Cardiacfunction?Cardiac output and pressure CO= Pr / R= SV x HR Legenda Pr = systemicpressure R = systemicresistance SV = stroke volume (amountofbloodejectevery beat) HR = numberofbeats per minute
Cardiacfunction = CODeterminants Cardiac rate Inotropic condition = contractility Venus return (RV): influenced from neuroumoral factors (Frank-Starling law) Peripheric resistance = CARDIAC OUTPUT 4-6 l/min CARDIAC INDEX 1.6-2.5 l/min/m²
Cardiac output = CO CO= Pr / R= SV x HR examples : Increaseof FC -> doesnotincrease GC, decreaseof the VOLUME SYSTOLE-SV (ifRvdoesnotincrease) Increaseof RV -> oncreases GC 10-20% (increaseof Pa A dx 10 mmHg) Increaseof FC + Increaseof RV -> increases GC with = SV Stirringadrenergethic -> increases RV + increseof the functionof the pump (FC, contract?) = INCREASES GC Importantreductionof FC or alterationof V dx -> increaseof Pa A dx = barrierfor the venouscomeback Organs are abletochangetheir flow working on the oppositions; they are abletoregulate the distributionof the CARDIAC RANGE.
diastolica Difetto di riempimento sistolica sistolica Difetto di espulsione
Cardiacpower outputVentricularfunctionindex Cardiac Power output=MAP x CO= SW X HR
Functionofbloodcirculation TRANSPORT substrates and cathabolismproductsto and fromorgans and tissues in a changeablemeasure and in proportionofherrequirements and necessities GOAL tomaintainanoptimalcompositionof the interstitialfluidnecessaryfor the cellularfunction