90 likes | 216 Views
Christian Eggermont Radboud University Nijmegen Metagrobologist and Mathematician Webdesign and Internet specialist Puzzledesigner. Magic Squares. Multimagic Squares. Numbers 1, 2 , …, n 2 (order n>1). Rows have same sum S. Columns have same sum S. m a g i c.
E N D
Christian Eggermont Radboud University Nijmegen Metagrobologist and Mathematician Webdesign and Internet specialist Puzzledesigner
Magic Squares Multimagic Squares Numbers 1, 2, …, n2(order n>1) Rows have same sum S Columns have same sum S m a g i c Diagonals have same sum S Constructionmethods for all orders > 2 Lo Shu ± 2200 B.C.
p-Multimagic Squares M is a p-multimagic square if for each 1 ≤ i ≤ p the matrix obtained by raising each element of M to the i-th power is a magic square. m u l t i Numbers 1, 2, … , n2 Rows have same sumColumns have same sum Diagonals have same sum 2-multimagic squareH.E.Dudeney(<1917) m a g i c
p-Multimagic Squares Properties Some ‘simple’ facts The Questions How to make them? }=> p-multimagic order n p-multimagic order m p-multimagic order n*m How many are there (for a given p and order n)? • There are no 3-multimagic squares of order 4*k+2 If you drop the condition of different numbers then diagonal Latin Squares are ‘∞-multimagic squares’:
2-Multimagic Squares 1890: Order 8 Pfefffermann (Ray?) Order 9 Pfeffermann 2004: Order 10 Jansson Order 11 Jansson
3-Multimagic Squares 1905: Order 128 Tarry 1933: Order 64 Cazalas 1949: Order 32 Benson 2002: Order 12 Trump
4-,5-,6-Multimagic Squares 1984?: 4-multimagic Order 256 Charles Devimeux? 2001: 4-multimagic Order 512 Boyer & Viricel 5-multimagic Order 1024 Boyer & Viricel 2003: 4-multimagic Order 256 Boyer 4-multimagic Order 256 Gao Zhiyuan & Wu Shuoxin 5-multimagic Order 729 Li Wen 6-multimagic Order 4096 Pan Fengchu
Result There is a p-multimagic square for all p Harm Derksen, Christian Eggermont, Arno van den Essen To appear More information (later) on http://www.puzzled.nl Explicit p-multimagic squares of order qp where q is the smallest prime ≥ 2*p-1 e.g. the first 7-multimagic of order 137 1cm for each number then the square would cover the benelux