90 likes | 262 Views
E E 1205 Circuit Analysis. Lecture 03 - Simple Resistive Circuits and Applications. Calculating Resistance. When conductor has uniform cross-section. Temperature Coefficient of Resistance. Metallic conductors have a linear increase of resistance with increased temperature.
E N D
E E 1205 Circuit Analysis Lecture 03 - Simple Resistive Circuits and Applications
Calculating Resistance When conductor has uniform cross-section
Temperature Coefficient of Resistance Metallic conductors have a linear increase of resistance with increased temperature. To is the reference temperature (usually 20oC) and Ro is the resistance at the reference temperature. a is the temperature coefficient of resistance for the material. At 20oC, some values for a are:
Resistors in Series By KCL: Is = I1= I2 By Ohm’s Law: V1 = R1·I1 and V2 = R2·I2 Combine: Vs = R1I1 + R2I2 = (R1 + R2) Is = ReqIs In General: Req = R1 + R2 +···+ Rn
Resistors in Parallel (1/2) By KVL: Vs = V1 = V2 By KCL: Is = I1 + I2 By Ohm’s Law: and Combine:
Resistors in Parallel (2/2) For two resistors: For many resistors: In terms of conductance:
Voltage Divider Equations Unloaded: Loaded: If RL >> R2: