1 / 159

Govindrao Wanjari College of Engineering & Technology,Nagpur Department of CSE Session: 2017-18

Govindrao Wanjari College of Engineering & Technology,Nagpur Department of CSE Session: 2017-18 Branch/ Sem : CSE/4 th sem “COMPLEXITY ANALYSIS” Subject :DSPD Subject Teacher: Prof.K.A.Shendre. Algorithms. What is an algorithm?

idac
Download Presentation

Govindrao Wanjari College of Engineering & Technology,Nagpur Department of CSE Session: 2017-18

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Govindrao Wanjari College of Engineering & Technology,NagpurDepartment of CSE Session: 2017-18 Branch/ Sem: CSE/4thsem“COMPLEXITY ANALYSIS” Subject :DSPD Subject Teacher: Prof.K.A.Shendre

  2. Algorithms • What is an algorithm? • An algorithm is a finite set of precise instructions for performing a computation or for solving a problem. • This is a rather vague definition. You will get to know a more precise and mathematically useful definition when you attend CS420. • But this one is good enough for now…

  3. Algorithms • Properties of algorithms: • Input from a specified set, • Output from a specified set (solution), • Definiteness of every step in the computation, • Correctness of output for every possible input, • Finiteness of the number of calculation steps, • Effectiveness of each calculation step and • Generality for a class of problems.

  4. Algorithm Examples • We will use a pseudocode to specify algorithms, which slightly reminds us of Basic and Pascal. • Example: an algorithm that finds the maximum element in a finite sequence • procedure max(a1, a2, …, an: integers) • max := a1 • for i := 2 to n • if max < aithen max := ai • {max is the largest element}

  5. Algorithm Examples • Another example: a linear search algorithm, that is, an algorithm that linearly searches a sequence for a particular element. • procedure linear_search(x: integer; a1, a2, …, an: integers) • i := 1 • while (i  n and x  ai) • i := i + 1 • if i  n then location := i • else location := 0 • {location is the subscript of the term that equals x, or is zero if x is not found}

  6. Algorithm Examples • If the terms in a sequence are ordered, a binary search algorithm is more efficient than linear search. • The binary search algorithm iteratively restricts the relevant search interval until it closes in on the position of the element to be located.

  7. center element Algorithm Examples binary search for the letter ‘j’ search interval a c d f g h j l m o p r s u v x z

  8. center element Algorithm Examples binary search for the letter ‘j’ search interval a c d f g h j l m o p r s u v x z

  9. center element Algorithm Examples binary search for the letter ‘j’ search interval a c d f g h j l m o p r s u v x z

  10. center element Algorithm Examples binary search for the letter ‘j’ search interval a c d f g h j l mo p r s u v x z

  11. center element Algorithm Examples binary search for the letter ‘j’ search interval a c d f g h j l mo p r s u v x z found !

  12. Algorithm Examples • procedure binary_search(x: integer; a1, a2, …, an: integers) • i := 1 {i is left endpoint of search interval} • j := n {j is right endpoint of search interval} • while (i < j) • begin • m := (i + j)/2 • if x > amthen i := m + 1 • else j := m • end • if x = aithen location := i • else location := 0 • {location is the subscript of the term that equals x, or is zero if x is not found}

  13. Complexity • In general, we are not so much interested in the time and space complexity for small inputs. • For example, while the difference in time complexity between linear and binary search is meaningless for a sequence with n = 10, it is gigantic for n = 230.

  14. Complexity • For example, let us assume two algorithms A and B that solve the same class of problems. • The time complexity of A is 5,000n, the one for B is 1.1n for an input with n elements. • For n = 10, A requires 50,000 steps, but B only 3, so B seems to be superior to A. • For n = 1000, however, A requires 5,000,000 steps, while B requires 2.51041 steps.

  15. Complexity • This means that algorithm B cannot be used for large inputs, while algorithm A is still feasible. • So what is important is the growth of the complexity functions. • The growth of time and space complexity with increasing input size n is a suitable measure for the comparison of algorithms.

  16. Complexity • Comparison: time complexity of algorithms A and B Input Size Algorithm A Algorithm B n 5,000n 1.1n 10 50,000 3 100 500,000 13,781 1,000 5,000,000 2.51041 1,000,000 5109 4.81041392

  17. Complexity • This means that algorithm B cannot be used for large inputs, while running algorithm A is still feasible. • So what is important is the growth of the complexity functions. • The growth of time and space complexity with increasing input size n is a suitable measure for the comparison of algorithms.

  18. The Growth of Functions • The growth of functions is usually described using the big-O notation. • Definition: Let f and g be functions from the integers or the real numbers to the real numbers. • We say that f(x) is O(g(x)) if there are constants C and k such that • |f(x)|  C|g(x)| • whenever x > k.

  19. The Growth of Functions • When we analyze the growth of complexity functions, f(x) and g(x) are always positive. • Therefore, we can simplify the big-O requirement to • f(x)  Cg(x) whenever x > k. • If we want to show that f(x) is O(g(x)), we only need to find one pair (C, k) (which is never unique).

  20. The Growth of Functions • The idea behind the big-O notation is to establish an upper boundary for the growth of a function f(x) for large x. • This boundary is specified by a function g(x) that is usually much simpler than f(x). • We accept the constant C in the requirement • f(x)  Cg(x) whenever x > k, • because C does not grow with x. • We are only interested in large x, so it is OK iff(x) > Cg(x) for x  k.

  21. The Growth of Functions • Example: • Show that f(x) = x2 + 2x + 1 is O(x2). • For x > 1 we have: • x2 + 2x + 1  x2 + 2x2 + x2 •  x2 + 2x + 1  4x2 • Therefore, for C = 4 and k = 1: • f(x)  Cx2 whenever x > k. •  f(x) is O(x2).

  22. The Growth of Functions • Question: If f(x) is O(x2), is it also O(x3)? • Yes. x3 grows faster than x2, so x3 grows also faster than f(x). • Therefore, we always have to find the smallest simple function g(x) for which f(x) is O(g(x)).

  23. The Growth of Functions • “Popular” functions g(n) are • n log n, 1, 2n, n2, n!, n, n3, log n • Listed from slowest to fastest growth: • 1 • log n • n • n log n • n2 • n3 • 2n • n!

  24. The Growth of Functions • A problem that can be solved with polynomial worst-case complexity is called tractable. • Problems of higher complexity are called intractable. • Problems that no algorithm can solve are called unsolvable. • You will find out more about this in CS420.

  25. Useful Rules for Big-O • For any polynomial f(x) = anxn + an-1xn-1 + … + a0, where a0, a1, …, an are real numbers, • f(x) is O(xn). • If f1(x) is O(g1(x)) and f2(x) is O(g2(x)), then (f1 + f2)(x) is O(max(g1(x), g2(x))) • If f1(x) is O(g(x)) and f2(x) is O(g(x)), then(f1 + f2)(x) is O(g(x)). • If f1(x) is O(g1(x)) and f2(x) is O(g2(x)), then (f1f2)(x) is O(g1(x) g2(x)).

  26. Complexity Examples • What does the following algorithm compute? • procedure who_knows(a1, a2, …, an: integers) • m := 0 • for i := 1 to n-1 • for j := i + 1 to n • if |ai – aj| > m then m := |ai – aj| • {m is the maximum difference between any two numbers in the input sequence} • Comparisons: n-1 + n-2 + n-3 + … + 1 • = (n – 1)n/2 = 0.5n2 – 0.5n • Time complexity is O(n2).

  27. Complexity Examples • Another algorithm solving the same problem: • procedure max_diff(a1, a2, …, an: integers) • min := a1 • max := a1 • for i := 2 to n • if ai < min then min := ai • else if ai > max then max := ai • m := max - min • Comparisons: 2n - 2 • Time complexity is O(n).

  28. Govindrao Wanjari College of Engineering & Technology,NagpurDepartment of CSE Session: 2017-18 Branch/ Sem: CSE/4th sem “STACKS” Subject :DSPD Subject Teacher: Prof.K.A.Shendre

  29. Stack Overview • Stack ADT • Basic operations of stack • Pushing, popping etc. • Implementations of stacks using • array • linked list

  30. The Stack ADT • A stack is a list with the restriction • that insertions and deletions can only be performed at the top of the list • The other end is called bottom • Fundamental operations: • Push: Equivalent to an insert • Pop: Deletes the most recently inserted element • Top: Examines the most recently inserted element

  31. Stack ADT • Stacks are less flexible • but are more efficient and easy to implement • Stacks are known as LIFO (Last In, First Out) lists. • The last element inserted will be the first to be retrieved

  32. A • A • B • A • top • top • top Push and Pop • Primary operations: Push and Pop • Push • Add an element to the top of the stack • Pop • Remove the element at the top of the stack • empty stack • push an element • push another • pop • top

  33. Implementation of Stacks • Any list implementation could be used to implement a stack • Arrays (static: the size of stack is given initially) • Linked lists (dynamic: never become full) • We will explore implementations based on array and linked list • Let’s see how to usean array to implement a stack first

  34. Array Implementation • Need to declare an array size ahead of time • Associated with each stack is TopOfStack • for an empty stack, set TopOfStack to -1 • Push • (1)   Increment TopOfStack by 1. • (2)   Set Stack[TopOfStack] = X • Pop • (1)   Set return value to Stack[TopOfStack] • (2)   Decrement TopOfStack by 1 • These operations are performed in very fast constant time

  35. Stack class class Stack { public: Stack(int size = 10); // constructor ~Stack() { delete [] values; } // destructor bool IsEmpty() { return top == -1; } bool IsFull() { return top == maxTop; } double Top(); void Push(const double x); double Pop(); void DisplayStack(); private: intmaxTop; // max stack size = size - 1 int top; // current top of stack double* values; // element array };

  36. Stack class • Attributes of Stack • maxTop: the max size of stack • top: the index of the top element of stack • values: point to an array which stores elements of stack • Operations of Stack • IsEmpty: return true if stack is empty, return false otherwise • IsFull: return true if stack is full, return false otherwise • Top: return the element at the top of stack • Push: add an element to the top of stack • Pop: delete the element at the top of stack • DisplayStack: print all the data in the stack

  37. Create Stack • The constructor of Stack • Allocate a stack array of size. By default, size = 10. • When the stack is full, top will have its maximum value, i.e. size – 1. • Initially top is set to -1. It means the stack is empty. Stack::Stack(int size /*= 10*/) { maxTop = size - 1; values = new double[size]; top = -1; } Although the constructor dynamically allocates the stack array, the stack is still static. The size is fixed after the initialization.

  38. Push Stack • void Push(constdouble x); • Push an element onto the stack • If the stack is full, print the error information. • Note top always represents the index of the top element. After pushing an element, increment top. void Stack::Push(constdouble x) { if (IsFull()) cout << "Error: the stack is full." << endl; else values[++top] = x; }

  39. Pop Stack • double Pop() • Pop and return the element at the top of the stack • If the stack is empty, print the error information. (In this case, the return value is useless.) • Don’t forgot to decrement top double Stack::Pop() { if (IsEmpty()) { cout << "Error: the stack is empty." << endl; return -1; } else { return values[top--]; } }

  40. Stack Top • double Top() • Return the top element of the stack • Unlike Pop, this function does not remove the top element double Stack::Top() { if (IsEmpty()) { cout << "Error: the stack is empty." << endl; return -1; } else return values[top]; }

  41. Printing all the elements • void DisplayStack() • Print all the elements void Stack::DisplayStack() { cout << "top -->"; for (int i = top; i >= 0; i--) cout << "\t|\t" << values[i] << "\t|" << endl; cout << "\t|---------------|" << endl; }

  42. Using Stack result int main(void) { Stack stack(5); stack.Push(5.0); stack.Push(6.5); stack.Push(-3.0); stack.Push(-8.0); stack.DisplayStack(); cout << "Top: " << stack.Top() << endl; stack.Pop(); cout << "Top: " << stack.Top() << endl; while (!stack.IsEmpty()) stack.Pop(); stack.DisplayStack(); return 0; }

  43. Implementation based on Linked List • Now let us implement a stack based on a linked list • To make the best out of the code of List, we implement Stack by inheritingList • To let Stack access private member head, we make Stack as a friend of List class List { public: List(void) { head = NULL; } // constructor ~List(void); // destructor bool IsEmpty() { return head == NULL; } Node* InsertNode(int index, double x); int FindNode(double x); int DeleteNode(double x); void DisplayList(void); private: Node* head; friendclass Stack; };

  44. Implementation based on Linked List class Stack : public List { public: Stack() {} // constructor ~Stack() {} // destructor double Top() { if (head == NULL) { cout << "Error: the stack is empty." << endl; return -1; } else return head->data; } void Push(constdouble x) { InsertNode(0, x); } double Pop() { if (head == NULL) { cout << "Error: the stack is empty." << endl; return -1; } else { double val = head->data; DeleteNode(val); return val; } } void DisplayStack() { DisplayList(); } }; Note: the stack implementation based on a linked list will never be full.

  45. Balancing Symbols • To check that every right brace, bracket, and parentheses must correspond to its left counterpart • e.g. [( )] is legal, but [( ] ) is illegal • Algorithm (1)   Make an empty stack. (2)   Read characters until end of file i.    If the character is an opening symbol, push it onto the stack ii.   If it is a closing symbol, then if the stack is empty, report an error iii.  Otherwise, pop the stack. If the symbol popped is not the corresponding opening symbol, then report an error (3)   At end of file, if the stack is not empty, report an error

  46. Postfix Expressions • Calculate 4.99 * 1.06 + 5.99 + 6.99 * 1.06 • Need to know the precedence rules • Postfix (reverse Polish) expression • 4.99 1.06 * 5.99 + 6.99 1.06 * + • Use stack to evaluate postfix expressions • When a number is seen, it is pushed onto the stack • When an operator is seen, the operator is applied to the 2 numbers that are popped from the stack. The result is pushed onto the stack • Example • evaluate 6 5 2 3 + 8 * + 3 + * • The time to evaluate a postfix expression is O(N) • processing each element in the input consists of stack operations and thus takes constant time

  47. Queue Overview • Queue ADT • Basic operations of queue • Enqueuing, dequeuing etc. • Implementation of queue • Array • Linked list

  48. Queue ADT • Like a stack, a queue is also a list. However, with a queue, insertion is done at one end, while deletion is performed at the other end. • Accessing the elements of queues follows a First In, First Out (FIFO) order. • Like customers standing in a check-out line in a store, the first customer in is the first customer served.

  49. The Queue ADT • Another form of restricted list • Insertion is done at one end, whereas deletion is performed at the other end • Basic operations: • enqueue: insert an element at the rear of the list • dequeue: delete the element at the front of the list • First-in First-out (FIFO) list

More Related