1 / 24

Patricia Fachini Brookhaven National Laboratory

Resonance Production. Recent Results. Patricia Fachini Brookhaven National Laboratory. Motivation Measurements Results Summary. π -. ρ 0. π +. ρ 0. ρ 0. ρ 0. π -. π +. π -. ρ 0. +. +. +. π +. -. -. -. Motivation - I.

idana
Download Presentation

Patricia Fachini Brookhaven National Laboratory

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Resonance Production Recent Results Patricia Fachini Brookhaven National Laboratory Motivation Measurements Results Summary QM2004, Oakland, Jan 11-17 Patricia Fachini

  2. π- ρ0 π+ ρ0 ρ0 ρ0 π- π+ π- ρ0 + + + π+ - - - Motivation - I • In-medium modification of mass and/or width  Chiral Symmetry Restoration, Collision Broadening or Phase Space? • ρ0(770) Leptonic decay channel probes all stages of the collision. Hadronic decay channel probes only late stages of the collision • Φ Information from early time ? • K*0(892)  Regeneration and daughter rescattering time scale ? ρ0 c = 1.3 fm Φ c = 44 fm QM2004, Oakland, Jan 11-17 Patricia Fachini

  3. π K* K K* measured π K* K*lost K π K* π π K* K K K K* measured Motivation - II • If resonance decays before kinetic freeze-out  not reconstructed due to rescattering of daughters • K*0(c = 4 fm)survival probability timebetween chemical and kinetic freeze-out, source size and pT of K*0 • Chemical freeze-out elastic interactionsπK  K*0πKregenerate K*0(892)until kinetic freeze-out • K*0/K may reveal time between chemical and kinetic freeze-out • Λ*/Λ,Δ++/p,ρ0/π, f0/π? Chemical freeze-out Kinetic freeze-out QM2004, Oakland, Jan 11-17 Patricia Fachini

  4. σ(πp) σ(ππ) π p Δ++ π π p π Δ++ ρ π π π π π ρ π p π Δ++ K* π K π K* π π ρ K π π σ(Kπ) σ(ππ) Motivation - III • K*0 regeneration  σ(Kπ) • K*0daughter rescattering σ(ππ) • σ(ππ)>>>> σ(Kπ) • σ(pπ)>σ(ππ) • Hadronic cross-sections Change yields of K*,Λ*,Δ++,ρ0, f0 Chemical freeze-out Kinetic freeze-out  Probe dynamics between chemical and kinetic freeze-out QM2004, Oakland, Jan 11-17 Patricia Fachini

  5. Resonance Production – Hadronic Channel ρ0(770)π+ π-B.R. ~1 c = 1.3 fm Δ++(1232)  p π+ B.R. ~1 c = 1.6 fm f0(980) π+ π-B.R. 2/3 c = 2.6 fm K*0±(892) πK B.R. 2/3 c = 4 fm Σ(1385)  ΛπB.R. 0.88 c = 5.5 fm Λ(1520) p KB.R. 0.45 c = 12.6 fm Φ(1020) K+ K-B.R. 0.49 c = 44 fm Life Time QM2004, Oakland, Jan 11-17 Patricia Fachini

  6. Raw Invariant Mass Distribution from Data -I STAR Preliminary PHENIX NA49 Preliminary Minimum bias p+p ΦK+K- ΦK+K- Minimum bias Au+Au ΦK+K- 0-7% Pb+Pb sNN = 200 GeV sNN = 12.3 GeV |y|<0.5 |y|<2.0 STAR Preliminary NA49 Preliminary Minimum bias Au+Au ΦK+K- ΦK+K- sNN = 200 GeV 0-7% Pb+Pb Statistical error only |y|<0.5 sNN = 8.76 GeV Invariant Mass (GeV/c2) Invariant Mass (GeV/c2) Invariant Mass (GeV/c2) QM2004, Oakland, Jan 11-17 Patricia Fachini

  7. Σ*± +Σ*± Ξ+Ξ Raw Invariant Mass Distribution from Data -II STAR Preliminary STAR Preliminary Δ++ Δ++ 30-50% Au+Au Minimun bias p+p 0.8 ≤pT< 1.4 GeV/c 0.8 ≤pT< 1.3 GeV/c sNN = 200 GeV |y|<0.5 Statistical error only Invariant Mass (GeV/c2) Invariant Mass (GeV/c2) Λ(1520) Λ(1520) STAR Preliminary STAR Preliminary STAR Preliminary Minimun bias p+p Minimun bias p+p 0.4 ≤pT< 2.0 GeV/c 0-10% Au+Au 0.9 ≤pT< 1.5 GeV/c Invariant Mass (GeV/c2) Invariant Mass (GeV/c2) Invariant Mass (GeV/c2) QM2004, Oakland, Jan 11-17 Patricia Fachini

  8. Raw Invariant Mass Distribution from Data -III Minimun bias p+p 40-80% Au+Au 0.6 ≤pT< 08 GeV/c 0.6 ≤pT< 08 GeV/c STAR Preliminary sNN = 200 GeV STAR Preliminary |y|<0.5 Statistical error only STAR Preliminary STAR Preliminary STAR Preliminary K*± Minimun bias p+p Minimun bias p+p K*0 K*0 0-10% Au+Au 0.0 ≤pT< 3.2 GeV/c 0.8 ≤pT< 3.5 GeV/c 0.1 ≤pT< 1.5 GeV/c QM2004, Oakland, Jan 11-17 Patricia Fachini

  9. Phase Space = π+ ρ0 π+ π- π- -  M2 + pT2 M e T  M2 + pT2 3 Γ(M) Mρ M2– 4mπ2 2 BW(M) = Γ(M) = Γρ (M2 – M2)2+ M2Γ(M)2 Mρ2– 4mπ2 M Phase Space • M = Invariant Mass; pT = transverse momentum; T = Temperature • pp particle composition reasonably reproduced by statistical model  T = 160 MeV F. Becattini, Nucl. Phys. A 702, 336 (2002); Z. Phys. C 69, 485 (1996); F. Becattini and U. Heinz, Z. Phys. C 76, 269 (1997) • Au+Au between chemical and kinetic freeze-out  resonances formed until particles too far apart  resonances emittedT = 120 MeV E.V. Shuryak and G.E. Brown, Nucl. Phys. A 717 (2003) 322 P. Braun-Munzinger et.al., CERES Int. Note, March 2000, unpublished; E.V. Shuryak and G.E. Brown, Nucl. Phys. A 717 (2003) 322; P.K. Kolb and M. Prakash, nucl-th/0301007; H.W. Barz et al., Phys. Lett. B 265, 219 (1991); R. Rapp, hep-ph/0305011. QM2004, Oakland, Jan 11-17 Patricia Fachini

  10. K*0Mass and Width |y|<0.5 sNN = 200 GeV STAR Preliminary STAR Preliminary AuAu AuAu PDG value pp pp PDG value • K*0mass  shifted in p+p and Au+Au at low pT • K*0 width  agrees with the MC (GEANT) calculation • Systematic and statistical error added in quadrature QM2004, Oakland, Jan 11-17 Patricia Fachini

  11. Δ++Mass and Width |y|<0.5 sNN = 200 GeV STAR Preliminary STAR Preliminary Δ++ Mass GeV/c2 Δ++ Width GeV/c2 0.6 ≤ pT < 1.6 AuAu pp AuAu pp PDG value 0.6 ≤ pT < 1.6 pp dNch/dη dNch/dη • p+p at s = 27.5 GeV  MΔ++= 1225 ± 2 MeV/c2 • Δ++mass lower in p+p and Au+Au at low Nch • Δ++mass  increases with increasing Nch • Statistical errors only QM2004, Oakland, Jan 11-17 Patricia Fachini

  12. ρ0Mass • p+p at s = 27.5 GeV  M= 762.6 ± 2.6 MeV/c2 • PDG average hadroproduced ρ0 M= 769.0 ± 0.9 MeV/c2 • PDG average e+e-ρ M= 775.9 ± 0.5 MeV/c2 • ρ0mass ptdependent and lower than previous p+p measurement in both p+p and peripheral Au+Au collisions • ρ0mass high multiplicityp+plower than minimum bias p+p  multiplicity dependent • Systematic errors  common and correlated between p+p and peripheral Au+Au • ρ0width no sensitivity for systematic study 10% of minimum bias p+p for |η|<0.5 STAR Preliminary sNN = 200 GeV |y|<0.5 QM2004, Oakland, Jan 11-17 Patricia Fachini

  13. Possible Explanations for Mass Shift - I R. Rapp, hep-ph/0305011 • 1. Dynamical effectρ0interactions at late stages of the collision • nucleons, hyperons and baryon resonances • pions, kaons and ρ0-mesons • t-channel exchanges Distortion of the ρ0 spectral shape mass shift and/or broadening E.V. Shuryak and G.E. Brown, Nucl. Phys. A 717 (2003) 322 -23 MeV/c2 shift in the ρ0 mass -38 MeV/c2 shift in the ρ0mass due to t-channel attraction Δ++ different fromρ0 mass should increase!(prediction) QM2004, Oakland, Jan 11-17 Patricia Fachini

  14. π+ π+ π+ ρ0 ρ0 A A D π- π- π- Possible Explanations for Mass Shift - II • 2. Interference between various π+π- scattering channels can effectively distort the line shape of resonances R. Longacre, nucl-exp/0305015 • 3. Bose-Einstein correlations between ρ0decay daughters and pions in the surrounding matter can also distort the resonance shape G.D. Lafferty, Z. Phys. C 60, 659 (1993); R. Rapp, hep-ph/0305011; S. Pratt et al., nucl-th/0308087. Interference QM2004, Oakland, Jan 11-17 Patricia Fachini

  15. Spectra - I |y|<0.5 sNN = 200 GeV K*0 STAR Preliminary pp minbias ρ0 f0 K*± Au+Au Au+Au STAR Preliminary K*0 p+p STAR Preliminary p+p STAR Preliminary pp minbias Λ(1520) • Au+Au and K*0,Λ(1520)p+p spectra fit to exponential in mT-m0 • p+p  spectra fit to power-law Statistical error only QM2004, Oakland, Jan 11-17 Patricia Fachini

  16. Spectra - II sNN = 200 GeV NA49 Preliminary Δ++ Φ sNN = 200 GeV Au+Au Au+Au Φ |y|<0.5 p+p STAR Preliminary Central Pb+Pb p+p STAR Preliminary pp minbias Σ(1385) • Au+Au and Σ(1385)p+p  spectra fit to exponential • p+p  spectra fit to power-law sNN = 200 GeV Statistical error only QM2004, Oakland, Jan 11-17 Patricia Fachini

  17. Δ++ p ρ0 Φ π- K- K*0 K- Particle Ratios – Beam Energy Dependence STAR Preliminary STAR Preliminary STAR/NA49 Preliminary STAR Preliminary No strong energy and system size dependence (except K*0/K-) QM2004, Oakland, Jan 11-17 Patricia Fachini

  18. Particle Ratios – Multiplicity Dependence M. Bleicher et al. J. Phys. G 25 (1999) 1859 σ(Kπ) σ(ππ) Statistical and systematic errors added in quadrature σ(πp) • Φ/K-independent of centrality Φnot produced via kaon coalescence ? • Cross-section regeneration or rescattering ? QM2004, Oakland, Jan 11-17 Patricia Fachini

  19. t - c N(Δt) = N0 e K*0 K*0 K- K- 0.205 Au+Au = Δt - 0.385 c p+p e = Time between Chemical and Kinetic Freeze-out • If rescattering is the dominantprocess, • And the time between chemical and kinetic freeze-out should be Δt ~ 3 fm • If regeneration is the dominant process, Δt > 3 fm QM2004, Oakland, Jan 11-17 Patricia Fachini

  20. Δ++ p ρ0 π- K*0 K- Thermal Models - I Chemical freeze-out Au+Au Kinetic freeze-out Chemical = Kinetic freeze-out sNN = 200 GeV mρ=700MeV mρ=770MeV Statistical and systematic errors added in quadrature QM2004, Oakland, Jan 11-17 Patricia Fachini

  21. Λ(1520) Λ f0 π- Φ K- Thermal Models - II Chemical freeze-out sNN = 200 GeV Chemical freeze-out = Kinetic freeze-out Au+Au • Thermal calculations  Do not reproduce ratios of short-lived resonances Statistical and systematic errors added in quadrature QM2004, Oakland, Jan 11-17 Patricia Fachini

  22. Summary • Significantresonanceproduction measured from hadronic interactions • ρ0, K*0andΔ++mass shiftobserved in p+p and Au+Au collisions even after phase space correction • Δ++widthbroadening in central Au+Au collisions • Mass shift expected due to in-medium modifications, interference and Bose-Einstein correlations ? • Φ/K-independent of centrality Φnot produced via kaon coalescence ? • Short-lived resonances Regeneration and daughter rescattering driven by hadronic cross-sections ? • Resonancescan provide information on the collision dynamics QM2004, Oakland, Jan 11-17 Patricia Fachini

  23. PHENIX Preliminary Φe+e- dN/dy 1/2mT dN/dmTdy(GeV/c2)-2 ΦK+K- Minimum bias d+Au sNN = 200 GeV MT (GeV/c2) Outlook • What’s next? • We need: • Systematic study of K*0 and Δ++mass and widthin Au+Au • ρ0 in central Au+Au • Λ(1520),Σ(1385),Ξ(1530)… Other higher state resonances… • High-pTand v2 measurements of resonances • Leptonic Channel • Φ, ρ, ω… • Φ, ρComparison between leptonic and hadronic channels in Au+Au!!! • Requires • Large statistics RUN 4 @RHIC • RHIC Upgrades • Low mass dileptons  PHENIX • TOF  STAR QM2004, Oakland, Jan 11-17 Patricia Fachini

  24. Experimental References H. Zhangρ0(770), K*(892), Δ++(1232) STARPoster QM2004 S. SalurΣ(1385) STARPoster QM2004 C. Markert Λ(1520) STARTalk QM2004 J. MaΦ(1020)STAR Poster QM2004 L. Gaudiche Λ(1520) STARSQM2003 P. Fachinif0(980) STARSQM2003 R. SetoΦ(1020)PHENIX Talk QM2004 D. MukhpadhyayΦ(1020)PHENIX QM2002 C. MaguirreΦ(1020)PHENIX Poster QM2004 Marek Gazdzicki Φ(1020)NA49 Talk QM2004 V. Friese Φ(1020)NA49 SQM2003 QM2004, Oakland, Jan 11-17 Patricia Fachini

More Related