210 likes | 310 Views
ρ 0 Production in Cu+Cu Collisions at √s NN = 200 and 62.4 GeV in STAR. Motivation Measurements Results Conclusions. Patricia Fachini for the STAR collaboration. π -. ρ 0. π +. ρ 0. ρ 0. ρ 0. π -. π +. π -. ρ 0. +. +. +. π +. -. -. -. Motivation - I. π +. π -.
E N D
ρ0 Production in Cu+Cu Collisions at √sNN = 200 and 62.4 GeV in STAR Motivation Measurements Results Conclusions Patricia Fachini for the STAR collaboration QM2009, Knoxville, March 30 - April 4 Patricia Fachini
π- ρ0 π+ ρ0 ρ0 ρ0 π- π+ π- ρ0 + + + π+ - - - Motivation - I π+ π- • In-medium modification of mass and/or width Chiral Symmetry Restoration? • Leptonic decay channel probes all stages of the collision. • Hadronic decay channel probes only late stages of the collision. ρ0 π+ π- ρ0 c = 1.3 fm QM2009, Knoxville, March 30 - April 4 Patricia Fachini
Motivation - II • Hadrons scale number constituent quarks v2/n • ρ0 v2 scale number constituent quarks? • ρ0(770) production mechanism scale NCQ v2/n • ππρ0 n = 4 • qq ρ0 n = 2 • Difference between two limiting cases 30% C. Nonaka et al., Phys.Rev. C69 (2004) 031902 Hadron Gas Hadron Gas + QGP QGP QM2009, Knoxville, March 30 - April 4 Patricia Fachini
Motivation - III • Ifρ0 decays before kinetic freeze-out not reconstructed due to rescattering of daughters • Chemical freeze-out elastic interactionsπ+π- ρ0π+π-regenerateρ0until kinetic freeze-out • Is the regeneration and rescattering driven by the hadron cross-sections? π- ρ0 π- π+ ρ0 measured ρ0 ρ0 lost π- π+ ρ0 π- π+ ρ0 π+ π+ π- ρ0 measured Chemical freeze-out Kinetic freeze-out QM2009, Knoxville, March 30 - April 4 Patricia Fachini
σ(πp) σ(ππ) π p Δ++ π π p π Δ++ ρ π π π π π ρ π p π Δ++ K* π K π K* π π ρ K π π σ(Kπ) σ(ππ) Motivation - IV • ρ0 regeneration σ(ππ) • ρ0 daughter rescattering σ(πp)andσ(Kπ) • σ(ππ)>> σ(Kπ) • σ(πp)>σ(ππ) Chemical freeze-out Kinetic freeze-out Probe dynamics between chemical and kinetic freeze-outs QM2009, Knoxville, March 30 - April 4 Patricia Fachini
K0Sπ+π- ω(782) (π+π-) π0and π+ π- K0S ω η (π+π-) π0 and (π+π-) η’ (π+π-)ηand (π+π-) ρ0 η + η’ K*(892)0 Kπwith K misidentified as π K*0 + K*0misidentified π+π- Invariant Mass Distribution from Monte Carlo • HIJING events with a realistic simulation of detector response STAR Preliminary ρ0(770) π+π- sNN= 200 GeV ρ0 • Use ωandK*0shape from HIJING to fit the data • K*0signal is fixed using STAR measurement QM2009, Knoxville, March 30 - April 4 Patricia Fachini
Invariant Mass Distribution - Cocktail • Background subtracted like-sign technique. • ρ0 and f0 widths fixed according PDG. QM2009, Knoxville, March 30 - April 4 Patricia Fachini
Phase Space = π+ ρ0 π+ π- π- - M2 + pT2 M e T M2 + pT2 3 Γ(M) Mρ M2– 4mπ2 2 BW(M) = Γ(M) = Γρ (M2 – M2)2+ M2Γ(M)2 Mρ2– 4mπ2 M Phase Space • M = Invariant Mass; pT = transverse momentum; T = Temperature • Chemical and kinetic freeze-out resonances formed until particles too far apart resonances emitted T = 120 MeV • E.V. Shuryak and G.E. Brown, Nucl. Phys. A 717 (2003) 322 P. Braun-Munzinger et.al., CERES Int. Note, March 2000, unpublished; E.V. Shuryak and G.E. Brown, Nucl. Phys. A 717 (2003) 322; P.K. Kolb and M. Prakash, nucl-th/0301007; H.W. Barz et al., Phys. Lett. B 265, 219 (1991); R. Rapp, hep-ph/0305011. QM2009, Knoxville, March 30 - April 4 Patricia Fachini
Mass J. Adams et al., Phys. Rev. Lett. 92 (2004) 92301 Statistical errors only Statistical errors only • Mass shift ~45 MeV/c2 observed possible explanations • Medium modifications • Bose-Einstein correlations R. Rapp, Nucl.Phys. A725, 254 (2003), E.V. Shuryak and G.E. Brown, Nucl. Phys. A 717 (2003) 322 G.D. Lafferty, Z. Phys. C 60, 659 (1993); R. Rapp, Nucl.Phys. A725 (2003) 254-268 S. Pratt et al., Phys.Rev. C68 (2003) 064905 QM2009, Knoxville, March 30 - April 4 Patricia Fachini
Spectra • ρ0measured in four different centralities in Cu+Cu. • Statistical and systematic errors added in quadrature. • Small signal to background ratio prevents the measurement in central collisions (~1/1000). • Solid lines exponentialfits. QM2009, Knoxville, March 30 - April 4 Patricia Fachini
Mean pT J. Adams et al., Phys. Rev. Lett. 92 (2004) 92301 J. Adams et al., Phys. Rev. C 71 (2005) 64902 B. I. Abelev et al., Phys. Rev. C 78 (2008) 44906 • Statistical and systematic errors added in quadrature. • ρ0mean pT slightly increases with Npart. • ρ0mean pT comparable with proton mean pT. QM2009, Knoxville, March 30 - April 4 Patricia Fachini
Particle Ratios M. Bleicher et al. J. Phys. G 25 (1999) 1859 σ(Kπ) σ(ππ) σ(πp) • Cross-section regeneration or rescattering. • K* rescattering of the daughters. • ρ0 regeneration compensating rescattering of the daughters. QM2009, Knoxville, March 30 - April 4 Patricia Fachini
Particle Ratios M. Bleicher et al. J. Phys. G 25 (1999) 1859 σ(Kπ) σ(ππ) σ(πp) • Cross-section regeneration or rescattering. • K* rescattering of the daughters. • ρ0 regeneration compensating rescattering of the daughters. QM2009, Knoxville, March 30 - April 4 Patricia Fachini
Particle Ratios – Transport Model M. Bleicher et al. J. Phys. G 25 (1999) 1859 σ(Kπ) σ(ππ) σ(πp) • UrQMD long expansion time π+π- scattering will not have enough energy to produce ρ0. QM2009, Knoxville, March 30 - April 4 Patricia Fachini
Elliptic Flow • Significant ρ0v2 measured pT > 1.2 GeV/c v2 ~ 13 ± 4%. QM2009, Knoxville, March 30 - April 4 Patricia Fachini
Elliptic Flow n=4 n=2 • Resonance v2 ρ0(770) production mechanism scale NCQ v2/n • ππρ0 n = 4 orqq ρ0 n = 2 • a, b, c, and d constants extracted using KS0and Λ v2ρ0 v2n= 4.7 ± 2.9 • pT range covered not sufficient for conclusive statement on the ρ0production mechanism. X. Dong et al., Phys.Lett. B597 (2004) 328 an v2(pT,n) = - dn 1 + exp[-(pT/n – b)/c] QM2009, Knoxville, March 30 - April 4 Patricia Fachini
Conclusions • Significant ρ0production measured in Cu+Cu collisions at √sNN= 200 and 62.4 GeV. • Production measured in 20-60% of hadronic cross-section. • Mass shift ~45 MeV/c2 observed • Medium modifications. • Bose-Einstein correlations. • Regeneration and rescattering driven by hadron cross-sections. • K* rescattering of the daughters. • ρ0 regeneration compensating rescattering of the daughters. • First measurement of the ρ0v2 significantρ0v2measured. • pT range covered not sufficient for conclusive statement on the ρ0 production mechanism. See the poster by Prabhat Pujahari for details on the analysis of the results presented in this talk. QM2009, Knoxville, March 30 - April 4 Patricia Fachini
Elliptic Flow QM2009, Knoxville, March 30 - April 4 Patricia Fachini
Elliptic Flow • Significant ρ0v2 measured pT > 1.2 GeV/c v2 ~ 13 ± 4%. QM2009, Knoxville, March 30 - April 4 Patricia Fachini
Possible Explanations for Mass Shift - I R. Rapp, hep-ph/0305011 • 1. Dynamical effectρ0interactions at late stages of the collision • nucleons, hyperons and baryon resonances • pions, kaons and ρ0-mesons • t-channel exchanges • Distortion of the ρ0 spectral shape mass shift and/or broadening E.V. Shuryak and G.E. Brown, Nucl. Phys. A 717 (2003) 322 -23 MeV/c2 shift in the ρ0 mass -38 MeV/c2 shift in the ρ0mass due to t-channel attraction QM2009, Knoxville, March 30 - April 4 Patricia Fachini
π+ π+ π+ ρ0 ρ0 A A D π- π- π- Possible Explanations for Mass Shift - II • 2. Interference between various π+π- scattering channels can effectively distort the line shape of resonances R. Longacre, nucl-exp/0305015 • 3. Bose-Einstein correlations between ρ0decay daughters and pions in the surrounding matter can also distort the resonance shape G.D. Lafferty, Z. Phys. C 60, 659 (1993); R. Rapp, hep-ph/0305011; S. Pratt et al., nucl-th/0308087. Interference QM2009, Knoxville, March 30 - April 4 Patricia Fachini